|
|
| (17 intermediate revisions not shown.) |
| Line 1: |
Line 1: |
| - | [[Image:1t0j.gif|left|200px]] | |
| | | | |
| - | <!-- | + | ==Crystal structure of a complex between voltage-gated calcium channel beta2a subunit and a peptide of the alpha1c subunit== |
| - | The line below this paragraph, containing "STRUCTURE_1t0j", creates the "Structure Box" on the page.
| + | <StructureSection load='1t0j' size='340' side='right'caption='[[1t0j]], [[Resolution|resolution]] 2.00Å' scene=''> |
| - | You may change the PDB parameter (which sets the PDB file loaded into the applet) | + | == Structural highlights == |
| - | or the SCENE parameter (which sets the initial scene displayed when the page is loaded),
| + | <table><tr><td colspan='2'>[[1t0j]] is a 3 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens] and [https://en.wikipedia.org/wiki/Rattus_norvegicus Rattus norvegicus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1T0J OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1T0J FirstGlance]. <br> |
| - | or leave the SCENE parameter empty for the default display.
| + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2Å</td></tr> |
| - | --> | + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CL:CHLORIDE+ION'>CL</scene></td></tr> |
| - | {{STRUCTURE_1t0j| PDB=1t0j | SCENE= }}
| + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1t0j FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1t0j OCA], [https://pdbe.org/1t0j PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1t0j RCSB], [https://www.ebi.ac.uk/pdbsum/1t0j PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1t0j ProSAT]</span></td></tr> |
| | + | </table> |
| | + | == Function == |
| | + | [https://www.uniprot.org/uniprot/CACB2_RAT CACB2_RAT] The beta subunit of voltage-dependent calcium channels contributes to the function of the calcium channel by increasing peak calcium current, shifting the voltage dependencies of activation and inactivation, modulating G protein inhibition and controlling the alpha-1 subunit membrane targeting (By similarity).<ref>PMID:1370480</ref> <ref>PMID:11604404</ref> <ref>PMID:12042350</ref> |
| | + | == Evolutionary Conservation == |
| | + | [[Image:Consurf_key_small.gif|200px|right]] |
| | + | Check<jmol> |
| | + | <jmolCheckbox> |
| | + | <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/t0/1t0j_consurf.spt"</scriptWhenChecked> |
| | + | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> |
| | + | <text>to colour the structure by Evolutionary Conservation</text> |
| | + | </jmolCheckbox> |
| | + | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1t0j ConSurf]. |
| | + | <div style="clear:both"></div> |
| | + | <div style="background-color:#fffaf0;"> |
| | + | == Publication Abstract from PubMed == |
| | + | Voltage-gated calcium channels (Ca(V)s) govern muscle contraction, hormone and neurotransmitter release, neuronal migration, activation of calcium-dependent signalling cascades, and synaptic input integration. An essential Ca(V) intracellular protein, the beta-subunit (Ca(V)beta), binds a conserved domain (the alpha-interaction domain, AID) between transmembrane domains I and II of the pore-forming alpha(1) subunit and profoundly affects multiple channel properties such as voltage-dependent activation, inactivation rates, G-protein modulation, drug sensitivity and cell surface expression. Here, we report the high-resolution crystal structures of the Ca(V)beta2a conserved core, alone and in complex with the AID. Previous work suggested that a conserved region, the beta-interaction domain (BID), formed the AID-binding site; however, this region is largely buried in the Ca(V)beta core and is unavailable for protein-protein interactions. The structure of the AID-Ca(V)beta2a complex shows instead that Ca(V)beta2a engages the AID through an extensive, conserved hydrophobic cleft (named the alpha-binding pocket, ABP). The ABP-AID interaction positions one end of the Ca(V)beta near the intracellular end of a pore-lining segment, called IS6, that has a critical role in Ca(V) inactivation. Together, these data suggest that Ca(V)betas influence Ca(V) gating by direct modulation of IS6 movement within the channel pore. |
| | | | |
| - | '''Crystal structure of a complex between voltage-gated calcium channel beta2a subunit and a peptide of the alpha1c subunit'''
| + | Structure of a complex between a voltage-gated calcium channel beta-subunit and an alpha-subunit domain.,Van Petegem F, Clark KA, Chatelain FC, Minor DL Jr Nature. 2004 Jun 10;429(6992):671-5. Epub 2004 May 12. PMID:15141227<ref>PMID:15141227</ref> |
| - | | + | |
| - | | + | |
| - | ==Overview==
| + | |
| - | Voltage-gated calcium channels (Ca(V)s) govern muscle contraction, hormone and neurotransmitter release, neuronal migration, activation of calcium-dependent signalling cascades, and synaptic input integration. An essential Ca(V) intracellular protein, the beta-subunit (Ca(V)beta), binds a conserved domain (the alpha-interaction domain, AID) between transmembrane domains I and II of the pore-forming alpha(1) subunit and profoundly affects multiple channel properties such as voltage-dependent activation, inactivation rates, G-protein modulation, drug sensitivity and cell surface expression. Here, we report the high-resolution crystal structures of the Ca(V)beta2a conserved core, alone and in complex with the AID. Previous work suggested that a conserved region, the beta-interaction domain (BID), formed the AID-binding site; however, this region is largely buried in the Ca(V)beta core and is unavailable for protein-protein interactions. The structure of the AID-Ca(V)beta2a complex shows instead that Ca(V)beta2a engages the AID through an extensive, conserved hydrophobic cleft (named the alpha-binding pocket, ABP). The ABP-AID interaction positions one end of the Ca(V)beta near the intracellular end of a pore-lining segment, called IS6, that has a critical role in Ca(V) inactivation. Together, these data suggest that Ca(V)betas influence Ca(V) gating by direct modulation of IS6 movement within the channel pore.
| + | |
| | | | |
| - | ==About this Structure==
| + | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> |
| - | 1T0J is a [[Protein complex]] structure of sequences from [http://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens] and [http://en.wikipedia.org/wiki/Rattus_norvegicus Rattus norvegicus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1T0J OCA].
| + | </div> |
| | + | <div class="pdbe-citations 1t0j" style="background-color:#fffaf0;"></div> |
| | | | |
| - | ==Reference== | + | ==See Also== |
| - | Structure of a complex between a voltage-gated calcium channel beta-subunit and an alpha-subunit domain., Van Petegem F, Clark KA, Chatelain FC, Minor DL Jr, Nature. 2004 Jun 10;429(6992):671-5. Epub 2004 May 12. PMID:[http://www.ncbi.nlm.nih.gov/pubmed/15141227 15141227]
| + | *[[Ion channels 3D structures|Ion channels 3D structures]] |
| | + | == References == |
| | + | <references/> |
| | + | __TOC__ |
| | + | </StructureSection> |
| | [[Category: Homo sapiens]] | | [[Category: Homo sapiens]] |
| - | [[Category: Protein complex]] | + | [[Category: Large Structures]] |
| | [[Category: Rattus norvegicus]] | | [[Category: Rattus norvegicus]] |
| - | [[Category: Chatelain, F.]] | + | [[Category: Chatelain F]] |
| - | [[Category: Clark, K.]] | + | [[Category: Clark K]] |
| - | [[Category: Jr., D Minor.]] | + | [[Category: Minor Jr D]] |
| - | [[Category: Petegem, F Van.]] | + | [[Category: Van Petegem F]] |
| - | [[Category: Aid]]
| + | |
| - | [[Category: Calcium channel]]
| + | |
| - | [[Category: Ion channel]]
| + | |
| - | [[Category: Nucleotide kinase like domain]]
| + | |
| - | [[Category: Sh3 domain]]
| + | |
| - | ''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Sat May 3 09:21:19 2008''
| + | |
| Structural highlights
Function
CACB2_RAT The beta subunit of voltage-dependent calcium channels contributes to the function of the calcium channel by increasing peak calcium current, shifting the voltage dependencies of activation and inactivation, modulating G protein inhibition and controlling the alpha-1 subunit membrane targeting (By similarity).[1] [2] [3]
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
Voltage-gated calcium channels (Ca(V)s) govern muscle contraction, hormone and neurotransmitter release, neuronal migration, activation of calcium-dependent signalling cascades, and synaptic input integration. An essential Ca(V) intracellular protein, the beta-subunit (Ca(V)beta), binds a conserved domain (the alpha-interaction domain, AID) between transmembrane domains I and II of the pore-forming alpha(1) subunit and profoundly affects multiple channel properties such as voltage-dependent activation, inactivation rates, G-protein modulation, drug sensitivity and cell surface expression. Here, we report the high-resolution crystal structures of the Ca(V)beta2a conserved core, alone and in complex with the AID. Previous work suggested that a conserved region, the beta-interaction domain (BID), formed the AID-binding site; however, this region is largely buried in the Ca(V)beta core and is unavailable for protein-protein interactions. The structure of the AID-Ca(V)beta2a complex shows instead that Ca(V)beta2a engages the AID through an extensive, conserved hydrophobic cleft (named the alpha-binding pocket, ABP). The ABP-AID interaction positions one end of the Ca(V)beta near the intracellular end of a pore-lining segment, called IS6, that has a critical role in Ca(V) inactivation. Together, these data suggest that Ca(V)betas influence Ca(V) gating by direct modulation of IS6 movement within the channel pore.
Structure of a complex between a voltage-gated calcium channel beta-subunit and an alpha-subunit domain.,Van Petegem F, Clark KA, Chatelain FC, Minor DL Jr Nature. 2004 Jun 10;429(6992):671-5. Epub 2004 May 12. PMID:15141227[4]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Perez-Reyes E, Castellano A, Kim HS, Bertrand P, Baggstrom E, Lacerda AE, Wei XY, Birnbaumer L. Cloning and expression of a cardiac/brain beta subunit of the L-type calcium channel. J Biol Chem. 1992 Jan 25;267(3):1792-7. PMID:1370480
- ↑ Yamada Y, Nagashima M, Tsutsuura M, Kobayashi T, Seki S, Makita N, Horio Y, Tohse N. Cloning of a functional splice variant of L-type calcium channel beta 2 subunit from rat heart. J Biol Chem. 2001 Dec 14;276(50):47163-70. Epub 2001 Oct 16. PMID:11604404 doi:10.1074/jbc.M108049200
- ↑ Colecraft HM, Alseikhan B, Takahashi SX, Chaudhuri D, Mittman S, Yegnasubramanian V, Alvania RS, Johns DC, Marban E, Yue DT. Novel functional properties of Ca(2+) channel beta subunits revealed by their expression in adult rat heart cells. J Physiol. 2002 Jun 1;541(Pt 2):435-52. PMID:12042350
- ↑ Van Petegem F, Clark KA, Chatelain FC, Minor DL Jr. Structure of a complex between a voltage-gated calcium channel beta-subunit and an alpha-subunit domain. Nature. 2004 Jun 10;429(6992):671-5. Epub 2004 May 12. PMID:15141227 doi:http://dx.doi.org/10.1038/nature02588
|