User:Anthony Milto/Sandbox 1
From Proteopedia
(Difference between revisions)
| Line 19: | Line 19: | ||
p300, a histone deacetyltransferase, cooperatively interacts with MyoD in the process of converting fibroblasts to myoblasts. This interaction occurs between MyoD's activation domain and both the amino terminus and carboxy terminus of p300 <ref>PMID: 9001254</ref>. | p300, a histone deacetyltransferase, cooperatively interacts with MyoD in the process of converting fibroblasts to myoblasts. This interaction occurs between MyoD's activation domain and both the amino terminus and carboxy terminus of p300 <ref>PMID: 9001254</ref>. | ||
| - | MyoD is degraded by ubiquination of its N-terminal Lys residue. Data suggests that this occurs through attachment of ubiquitin at the N-terminal residue, followed by synthesis of a polyubiquitin chain on an internal Lys residue, which sufficiently disrupts MyoD's structure to cause degradation. This process is a major pathway of selective protein degradation in eukaryotic cells <ref>DOI: 10.1093/emboj/17.20.5964</ref>. | + | MyoD is degraded by ubiquination of its N-terminal Lys residue. Data suggests that this occurs through attachment of ubiquitin at the N-terminal residue, followed by synthesis of a polyubiquitin chain on an internal Lys residue, which sufficiently disrupts MyoD's structure to cause degradation. This process is a major pathway of selective protein degradation in eukaryotic cells <ref>DOI: 10.1093/emboj/17.20.5964</ref>. Ubiquination takes place only when MyoD is hyperphosphorylated at its cyclin-dependent kinase (CDK) sites. These CDK sites are Ser or Thr residues that are preceded by a Pro residue. Ser200 has been demonstrated to be required for MyoD to become hyperphosphorylated <ref>Song, A., Wang, Q., Goebl, M. G., & Harrington, M. A. (1998). Phosphorylation of Nuclear MyoD Is Required for Its Rapid Degradation. Molecular and Cellular Biology. '''1998'''. 18. 4994–4999</ref>. |
== Knockout Effects == | == Knockout Effects == | ||
Revision as of 03:04, 13 October 2015
Function and Classification
MyoD, along with Myf5, is responsible for muscle cell differentiation and establishment of the myogenic lineage. It is a member of the basic helix loop helix (bHLH) family and myogenic factors subfamily of proteins [1].
| |||||||||||
References
- ↑ Phospho Site Plus. http://www.phosphosite.org/proteinAction.do?id=3637&showAllSites=true (accessed October 6, 2015)
- ↑ Jones S. An overview of the basic helix-loop-helix proteins. Genome Biol. 2004;5(6):226. Epub 2004 May 28. PMID:15186484 doi:http://dx.doi.org/10.1186/gb-2004-5-6-226
- ↑ Weintraub, H., Dwarki, V. J., Verma, I., Davis, R., Hollenberg, S., Snider, L., Lassar, A., Tapscott, S. J. Muscle-specific transcriptional activation by MyoD. Genes & Dev. 1991. 5. 1377-1386
- ↑ Kophengnavong, T., Michnowicz, J. E., & Blackwell, T. K. Establishment of Distinct MyoD, E2A, and Twist DNA Binding Specificities by Different Basic Region-DNA Conformations. Molecular and Cellular Biology, 2000, 20. 261–272.
- ↑ Jones S. An overview of the basic helix-loop-helix proteins. Genome Biol. 2004;5(6):226. Epub 2004 May 28. PMID:15186484 doi:http://dx.doi.org/10.1186/gb-2004-5-6-226
- ↑ Weintraub, H., Dwarki, V. J., Verma, I., Davis, R., Hollenberg, S., Snider, L., Lassar, A., Tapscott, S. J. Muscle-specific transcriptional activation by MyoD. Genes & Dev. 1991. 5. 1377-1386
- ↑ Yang Z, MacQuarrie KL, Analau E, Tyler AE, Dilworth FJ, Cao Y, Diede SJ, Tapscott SJ. MyoD and E-protein heterodimers switch rhabdomyosarcoma cells from an arrested myoblast phase to a differentiated state. Genes Dev. 2009 Mar 15;23(6):694-707. doi: 10.1101/gad.1765109. PMID:19299559 doi:http://dx.doi.org/10.1101/gad.1765109
- ↑ Hamamori, Y., Wu, H. Y., Sartorelli, V., & Kedes, L. The basic domain of myogenic basic helix-loop-helix (bHLH) proteins is the novel target for direct inhibition by another bHLH protein, Twist. Molecular and Cellular Biology. 1997. 17. 6563–6573.
- ↑ Micheli L, Leonardi L, Conti F, Maresca G, Colazingari S, Mattei E, Lira SA, Farioli-Vecchioli S, Caruso M, Tirone F. PC4/Tis7/IFRD1 stimulates skeletal muscle regeneration and is involved in myoblast differentiation as a regulator of MyoD and NF-kappaB. J Biol Chem. 2011 Feb 18;286(7):5691-707. doi: 10.1074/jbc.M110.162842. Epub 2010, Dec 2. PMID:21127072 doi:http://dx.doi.org/10.1074/jbc.M110.162842
- ↑ Sartorelli V, Huang J, Hamamori Y, Kedes L. Molecular mechanisms of myogenic coactivation by p300: direct interaction with the activation domain of MyoD and with the MADS box of MEF2C. Mol Cell Biol. 1997 Feb;17(2):1010-26. PMID:9001254
- ↑ Breitschopf K, Bengal E, Ziv T, Admon A, Ciechanover A. A novel site for ubiquitination: the N-terminal residue, and not internal lysines of MyoD, is essential for conjugation and degradation of the protein. EMBO J. 1998 Oct 15;17(20):5964-73. PMID:9774340 doi:http://dx.doi.org/10.1093/emboj/17.20.5964
- ↑ Song, A., Wang, Q., Goebl, M. G., & Harrington, M. A. (1998). Phosphorylation of Nuclear MyoD Is Required for Its Rapid Degradation. Molecular and Cellular Biology. 1998. 18. 4994–4999
- ↑ Arnold, H. H.; Braun, T. Targeted inactivation of myogenic factor genes reveals their role during mouse myogenesis: a review. Int. J. Dev. Biol. 1996. 40. 345-353
