Carboxypeptidase A

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 4: Line 4:
==Introduction==
==Introduction==
-
<scene name='69/694222/3cpaoverview/1'>Carboxypeptidase A (peptidyl-L-amino acid hydrolase, EC 3.4.17.1, often abbreviated CPA)</scene> is a metallo[http://en.wikipedia.org/wiki/Exopeptidase exopeptidase] whose biological function is to cleave the [http://en.wikipedia.org/wiki/C-terminus C-terminal] amino acid residue from polypeptide substrates.<ref name="CPA1">Bukrinsky JT, Bjerrum MJ, Kadziola A. 1998. Native carboxypeptidase A in a new crystal environment reveals a different conformation of the important tyrosine 248. ''Biochemistry''. 37(47):16555-64. [PMID:9843422 doi:10.1021/bi981678i]</ref> Specifically, CPA is one member of a large group of Zn<sup>2+</sup> [http://en.wikipedia.org/wiki/Metalloprotein#Metalloenzymes metalloenzymes] that carries out the hydrolysis of C-terminal polypeptide residues through the [http://en.wikipedia.org/wiki/Deprotonation deprotonation] of a water molecule that is coordinated to the Zn<sup>2+</sup> ion in the enzyme's [http://en.wikipedia.org/wiki/Active_site active site].<ref name="CPA2">Christianson DW, Lipscomb WN. 1989. Carboxypeptidase A. ''Acc. Chem. Res.'' 22:62-9.</ref> CPA consists of a single polypeptide chain that contains 307 amino acids. Produced in the pancreas, CPA itself must first be modified by [http://en.wikipedia.org/wiki/Trypsin trypsin] and [http://en.wikipedia.org/wiki/Chymotrypsin chymotrypsin] in order to achieve an active form that serves its biological function.<ref name="CPA1" /> Although different biologically active forms of CPA are found across different species, including humans, much research has investigated bovine pancreatic zinc carboxypeptidase A. [http://en.wikipedia.org/wiki/X-ray_crystallography X-ray crystallography] has demonstrated that bovine CPA has the ability to bind two Zn<sup>2+</sup> ions in its active site, in which the binding of one Zn<sup>2+</sup> is catalytic, while the binding of a second Zn<sup>2+</sup> inhibits the hydrolysis reaction mechanism.<ref name="CPA1" />
+
<scene name='69/694222/3cpaoverview/1'>Carboxypeptidase A (peptidyl-L-amino acid hydrolase, EC 3.4.17.1, often abbreviated CPA)</scene> is a metallo[http://en.wikipedia.org/wiki/Exopeptidase exopeptidase] whose biological function is to cleave the [http://en.wikipedia.org/wiki/C-terminus C-terminal] amino acid residue from polypeptide substrates.<ref name="CPA1">Bukrinsky JT, Bjerrum MJ, Kadziola A. 1998. Native carboxypeptidase A in a new crystal environment reveals a different conformation of the important tyrosine 248. ''Biochemistry''. 37(47):16555-64. [http://pubs.acs.org/doi/abs/10.1021/bi981678i DOI: 10.1021/bi981678i]</ref> Specifically, CPA is one member of a large group of Zn<sup>2+</sup> [http://en.wikipedia.org/wiki/Metalloprotein#Metalloenzymes metalloenzymes] that carries out the hydrolysis of C-terminal polypeptide residues through the [http://en.wikipedia.org/wiki/Deprotonation deprotonation] of a water molecule that is coordinated to the Zn<sup>2+</sup> ion in the enzyme's [http://en.wikipedia.org/wiki/Active_site active site].<ref name="CPA2">Christianson DW, Lipscomb WN. 1989. Carboxypeptidase A. ''Acc. Chem. Res.'' 22:62-9.</ref> CPA consists of a single polypeptide chain that contains 307 amino acids. Produced in the pancreas, CPA itself must first be modified by [http://en.wikipedia.org/wiki/Trypsin trypsin] and [http://en.wikipedia.org/wiki/Chymotrypsin chymotrypsin] in order to achieve an active form that serves its biological function.<ref name="CPA1" /> Although different biologically active forms of CPA are found across different species, including humans, much research has investigated bovine pancreatic zinc carboxypeptidase A. [http://en.wikipedia.org/wiki/X-ray_crystallography X-ray crystallography] has demonstrated that bovine CPA has the ability to bind two Zn<sup>2+</sup> ions in its active site, in which the binding of one Zn<sup>2+</sup> is catalytic, while the binding of a second Zn<sup>2+</sup> inhibits the hydrolysis reaction mechanism.<ref name="CPA1" />
==Structure==
==Structure==

Revision as of 12:29, 28 March 2017

This Sandbox is Reserved from 02/09/2015, through 05/31/2016 for use in the course "CH462: Biochemistry 2" taught by Geoffrey C. Hoops at the Butler University. This reservation includes Sandbox Reserved 1051 through Sandbox Reserved 1080.
To get started:
  • Click the edit this page tab at the top. Save the page after each step, then edit it again.
  • Click the 3D button (when editing, above the wikitext box) to insert Jmol.
  • show the Scene authoring tools, create a molecular scene, and save it. Copy the green link into the page.
  • Add a description of your scene. Use the buttons above the wikitext box for bold, italics, links, headlines, etc.

More help: Help:Editing

Carboxypeptidase A in Bos taurus

Carboxypeptidase A (CPA) biological assembly (PDB: 3CPA)

Drag the structure with the mouse to rotate

References

  1. 1.0 1.1 1.2 1.3 1.4 1.5 1.6 Bukrinsky JT, Bjerrum MJ, Kadziola A. 1998. Native carboxypeptidase A in a new crystal environment reveals a different conformation of the important tyrosine 248. Biochemistry. 37(47):16555-64. DOI: 10.1021/bi981678i
  2. 2.0 2.1 2.2 2.3 2.4 2.5 2.6 Christianson DW, Lipscomb WN. 1989. Carboxypeptidase A. Acc. Chem. Res. 22:62-9.
  3. Suh J, Cho W, Chung S. 1985. Carboxypeptidase A-catalyzed hydrolysis of α-(acylamino)cinnamoyl derivatives of L-β-phenyllactate and L-phenylalaninate: evidence for acyl-enzyme intermediates. J. Am. Chem. Soc. 107:4530-5. DOI: 10.1021/ja00301a025
Personal tools