|
|
| Line 3: |
Line 3: |
| | <StructureSection load='6sf5' size='340' side='right'caption='[[6sf5]], [[Resolution|resolution]] 1.90Å' scene=''> | | <StructureSection load='6sf5' size='340' side='right'caption='[[6sf5]], [[Resolution|resolution]] 1.90Å' scene=''> |
| | == Structural highlights == | | == Structural highlights == |
| - | <table><tr><td colspan='2'>[[6sf5]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Ccug_51940 Ccug 51940]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6SF5 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6SF5 FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[6sf5]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Leeuwenhoekiella_blandensis Leeuwenhoekiella blandensis]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6SF5 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=6SF5 FirstGlance]. <br> |
| - | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=MN:MANGANESE+(II)+ION'>MN</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.9Å</td></tr> |
| - | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[6sf4|6sf4]]</td></tr>
| + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=MN:MANGANESE+(II)+ION'>MN</scene></td></tr> |
| - | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">MED217_17135 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=360293 CCUG 51940])</td></tr> | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=6sf5 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6sf5 OCA], [https://pdbe.org/6sf5 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=6sf5 RCSB], [https://www.ebi.ac.uk/pdbsum/6sf5 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=6sf5 ProSAT]</span></td></tr> |
| - | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Ribonucleoside-diphosphate_reductase Ribonucleoside-diphosphate reductase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=1.17.4.1 1.17.4.1] </span></td></tr>
| + | |
| - | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6sf5 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6sf5 OCA], [http://pdbe.org/6sf5 PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=6sf5 RCSB], [http://www.ebi.ac.uk/pdbsum/6sf5 PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=6sf5 ProSAT]</span></td></tr> | + | |
| | </table> | | </table> |
| | + | == Function == |
| | + | [https://www.uniprot.org/uniprot/A3XHF9_LEEBM A3XHF9_LEEBM] |
| | <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| | == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
| Line 19: |
Line 19: |
| | </div> | | </div> |
| | <div class="pdbe-citations 6sf5" style="background-color:#fffaf0;"></div> | | <div class="pdbe-citations 6sf5" style="background-color:#fffaf0;"></div> |
| | + | |
| | + | ==See Also== |
| | + | *[[Ribonucleotide reductase 3D structures|Ribonucleotide reductase 3D structures]] |
| | == References == | | == References == |
| | <references/> | | <references/> |
| | __TOC__ | | __TOC__ |
| | </StructureSection> | | </StructureSection> |
| - | [[Category: Ccug 51940]] | |
| | [[Category: Large Structures]] | | [[Category: Large Structures]] |
| - | [[Category: Ribonucleoside-diphosphate reductase]] | + | [[Category: Leeuwenhoekiella blandensis]] |
| - | [[Category: Grinberg, I Rozman]]
| + | [[Category: Hasan M]] |
| - | [[Category: Hasan, M]] | + | [[Category: Logan DT]] |
| - | [[Category: Logan, D T]] | + | [[Category: Rozman Grinberg I]] |
| - | [[Category: Sjoberg, B M]] | + | [[Category: Sjoberg BM]] |
| - | [[Category: Metal binding protein]] | + | |
| - | [[Category: Ribonucleotide reductase apoprotein manganese binding redox protein deoxyribonucleotide synthesis]]
| + | |
| Structural highlights
Function
A3XHF9_LEEBM
Publication Abstract from PubMed
Outside of the photosynthetic machinery, high-valent manganese cofactors are rare in biology. It was proposed that a recently discovered subclass of ribonucleotide reductase (RNR), class Id, is dependent on a Mn2(IV,III) cofactor for catalysis. Class I RNRs consist of a substrate-binding component (NrdA) and a metal-containing radical-generating component (NrdB). Herein we utilize a combination of EPR spectroscopy and enzyme assays to underscore the enzymatic relevance of the Mn2(IV,III) cofactor in class Id NrdB from Facklamia ignava. Once formed, the Mn2(IV,III) cofactor confers enzyme activity that correlates well with cofactor quantity. Moreover, we present the X-ray structure of the apo- and aerobically Mn-loaded forms of the homologous class Id NrdB from Leeuwenhoekiella blandensis, revealing a dimanganese centre typical of the subclass, with a tyrosine residue maintained at distance from the metal centre and a lysine residue projected towards the metals. Structural comparison of the apo- and metal-loaded forms of the protein reveals a refolding of the loop containing the conserved lysine and an unusual shift in the orientation of helices within a monomer, leading to the opening of a channel towards the metal site. Such major conformational changes have not been observed in NrdB proteins before. Finally, in vitro reconstitution experiments reveal that the high-valent manganese cofactor is not formed spontaneously from oxygen, but can be generated from at least two different reduced oxygen species, i.e. H2O2 and superoxide (O 2 (.-) ). Considering the observed differences in the efficiency of these two activating reagents, we propose that the physiologically relevant mechanism involves superoxide.
Class Id ribonucleotide reductase utilizes a Mn2(IV,III) cofactor and undergoes large conformational changes on metal loading.,Rozman Grinberg I, Berglund S, Hasan M, Lundin D, Ho FM, Magnuson A, Logan DT, Sjoberg BM, Berggren G J Biol Inorg Chem. 2019 Aug 14. pii: 10.1007/s00775-019-01697-8. doi:, 10.1007/s00775-019-01697-8. PMID:31414238[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Rozman Grinberg I, Berglund S, Hasan M, Lundin D, Ho FM, Magnuson A, Logan DT, Sjoberg BM, Berggren G. Class Id ribonucleotide reductase utilizes a Mn2(IV,III) cofactor and undergoes large conformational changes on metal loading. J Biol Inorg Chem. 2019 Aug 14. pii: 10.1007/s00775-019-01697-8. doi:, 10.1007/s00775-019-01697-8. PMID:31414238 doi:http://dx.doi.org/10.1007/s00775-019-01697-8
|