Journal:JBIC:1
From Proteopedia
(Difference between revisions)

Line 10: | Line 10: | ||
Adenylate kinases (AK) from Gram-negative bacteria are generally devoid of metal ions in their LID domain. However, <scene name='Journal:JBIC:1/Metal_bound/4'>three metal ions</scene>, zinc, cobalt and iron, have been found in AK from Gram-negative bacteria. Crystal structures of substrate-free AK from Desulfovibrio gigas with three different metal ions: <scene name='Journal:JBIC:1/Zinc_bound/3'>Zn2+, Zn-AK</scene> ([[2xb4]]); <scene name='Journal:JBIC:1/Cobalt_bound/7'>Co2+, Co-AK</scene> ([[3l0s]]) and <scene name='Journal:JBIC:1/Fe_bound/8'>Fe2+, Fe-AK</scene> ([[3l0p]]) bound in its LID domain have been determined by X-ray crystallography. All three crystal structures are very similar to each other with the same LID domain topology, the only change being the presence of the different metal atoms. | Adenylate kinases (AK) from Gram-negative bacteria are generally devoid of metal ions in their LID domain. However, <scene name='Journal:JBIC:1/Metal_bound/4'>three metal ions</scene>, zinc, cobalt and iron, have been found in AK from Gram-negative bacteria. Crystal structures of substrate-free AK from Desulfovibrio gigas with three different metal ions: <scene name='Journal:JBIC:1/Zinc_bound/3'>Zn2+, Zn-AK</scene> ([[2xb4]]); <scene name='Journal:JBIC:1/Cobalt_bound/7'>Co2+, Co-AK</scene> ([[3l0s]]) and <scene name='Journal:JBIC:1/Fe_bound/8'>Fe2+, Fe-AK</scene> ([[3l0p]]) bound in its LID domain have been determined by X-ray crystallography. All three crystal structures are very similar to each other with the same LID domain topology, the only change being the presence of the different metal atoms. | ||
<br /> | <br /> | ||
- | |||
The structures of Zn- , Co- and Fe-AK contain the <scene name='Journal:JBIC:1/Lid_domain/5'>characteristic LID domain (residues 125-163)</scene> and <scene name='Journal:JBIC:1/Core_domain/1'>Core (residues 1-124 and 164-223) domains</scene>, which also include the AMP binding region. The LID domain harbors the <scene name='Journal:JBIC:1/Metal_motif/1'>Cys129-X5-His135-X15-Cys151-X2-Cys154- motif</scene>, which is responsible for metal binding in a tetrahedral fashion. In the absence of any substrate, the LID domain of all holo forms of AK was present in a fully open conformational state. The Core domain is <scene name='Journal:JBIC:1/Core_connection/3'>connected to the LID by residues 116-123 and 165-173</scene>. This Core domain mainly consists of a <scene name='Journal:JBIC:1/Core_helix/3'>five stranded beta sheet surrounded by 5 helices</scene> that keep the integrity of the tertiary structure of the enzyme. A <scene name='Journal:JBIC:1/Walker/4'>Walker motif</scene> with conserved sequence; <span style="color:#FF0000">G</span>-<span style="color:#FF8040">X</span>-<span style="color:#FFFF00">X</span>-<span style="color:#00FF00">G</span>-<span style="color:#0000FF">X</span>-<span style="color:#FF00FF">G</span>-<span style="color:#00FFFF">K</span> is present in the N-terminal region. The structures presented herein further reinforce the notion that the metal ion is purely structural, contributing to the stability of the LID domain. | The structures of Zn- , Co- and Fe-AK contain the <scene name='Journal:JBIC:1/Lid_domain/5'>characteristic LID domain (residues 125-163)</scene> and <scene name='Journal:JBIC:1/Core_domain/1'>Core (residues 1-124 and 164-223) domains</scene>, which also include the AMP binding region. The LID domain harbors the <scene name='Journal:JBIC:1/Metal_motif/1'>Cys129-X5-His135-X15-Cys151-X2-Cys154- motif</scene>, which is responsible for metal binding in a tetrahedral fashion. In the absence of any substrate, the LID domain of all holo forms of AK was present in a fully open conformational state. The Core domain is <scene name='Journal:JBIC:1/Core_connection/3'>connected to the LID by residues 116-123 and 165-173</scene>. This Core domain mainly consists of a <scene name='Journal:JBIC:1/Core_helix/3'>five stranded beta sheet surrounded by 5 helices</scene> that keep the integrity of the tertiary structure of the enzyme. A <scene name='Journal:JBIC:1/Walker/4'>Walker motif</scene> with conserved sequence; <span style="color:#FF0000">G</span>-<span style="color:#FF8040">X</span>-<span style="color:#FFFF00">X</span>-<span style="color:#00FF00">G</span>-<span style="color:#0000FF">X</span>-<span style="color:#FF00FF">G</span>-<span style="color:#00FFFF">K</span> is present in the N-terminal region. The structures presented herein further reinforce the notion that the metal ion is purely structural, contributing to the stability of the LID domain. | ||
</StructureSection> | </StructureSection> |
Revision as of 01:42, 25 April 2012
|
- ↑ Mukhopadhyay A, Kladova AV, Bursakov SA, Gavel OY, Calvete JJ, Shnyrov VL, Moura I, Moura JJ, Romao MJ, Trincao J. Crystal structure of the zinc-, cobalt-, and iron-containing adenylate kinase from Desulfovibrio gigas: a novel metal-containing adenylate kinase from Gram-negative bacteria. J Biol Inorg Chem. 2010 Sep 7. PMID:20821240 doi:10.1007/s00775-010-0700-8
Proteopedia Page Contributors and Editors (what is this?)
David Canner, Eran Hodis, Alexander Berchansky, Jaime Prilusky, Joel L. Sussman
This page complements a publication in scientific journals and is one of the Proteopedia's Interactive 3D Complement pages. For aditional details please see I3DC.