2hmr
From Proteopedia
(New page: 200px<br /><applet load="2hmr" size="350" color="white" frame="true" align="right" spinBox="true" caption="2hmr" /> '''Solution structure of reduced interstrand cr...) |
|||
Line 4: | Line 4: | ||
==Overview== | ==Overview== | ||
- | The solution structures of | + | The solution structures of 5'-Cp-N2-dG-3'-R-(alpha)-CH3-propyl-5'-Cp-N2-dG-3' and 5'-Cp-N2-dG-3'-S-(alpha)-CH3-propyl-5'-Cp-N2-dG-3' interstrand DNA cross-links in the 5'-CpG-3' sequence were determined by NMR spectroscopy. These were utilized as chemically stable surrogates for the corresponding carbinolamine interstrand cross-links arising from the crotonaldehyde- and acetaldehyde-derived R- and S-alpha-CH3-gamma-OH-1,N2-propanodeoxyguanosine adducts. The results provide an explanation for the observation that interstrand cross-link formation in the 5'-CpG-3' sequence by the R- and S-alpha-CH3-gamma-OH-1,N2-propanodeoxyguanosine adducts is dependent upon stereochemistry, favoring the R-alpha-CH3-gamma-OH-1,N2-propanodeoxyguanosine adduct [Kozekov, I. D., Nechev, L. V., Moseley, M. S., Harris, C. M., Rizzo, C. J., Stone, M. P., and Harris, T. M. (2003) J. Am. Chem. Soc. 125, 50-61]. Molecular dynamics calculations, restrained by NOE-based distances and empirical restraints, revealed that both the 5'-Cp-N2-dG-3'-R-(alpha)-CH3-propyl-5'-Cp-N2-dG-3' and 5'-Cp-N2-dG-3'-S-(alpha)-CH3-propyl-5'-Cp-N2-dG-3' cross-links were located in the minor groove and retained Watson-Crick hydrogen bonds at the tandem cross-linked C.G base pairs. However, for the 5'-Cp-N2-dG-3'-R-(alpha)-CH3-propyl-5'-Cp-N2-dG-3' cross-link, the (alpha)-CH3 group was positioned in the center of the minor groove, whereas for the 5'-Cp-N2-dG-3'-S-(alpha)-CH3-propyl-5'-Cp-N2-dG-3' cross-link, the (alpha)-CH3 group was positioned in the 3' direction, showing steric interference with the DNA helix. The 5'-Cp-N2-dG-3'-S-(alpha)-CH3-propyl-5'-Cp-N2-dG-3' cross-link exhibited a lower thermal stability as evidenced by NMR spectroscopy as a function of temperature. The two cross-links also exhibited apparent differences in the conformation of the interstrand three-carbon cross-link, which may also contribute to the lower apparent thermodynamic stability of the 5'-Cp-N2-dG-3'-S-(alpha)-CH3-propyl-5'-Cp-N2-dG-3' cross-link. |
==About this Structure== | ==About this Structure== | ||
Line 10: | Line 10: | ||
==Reference== | ==Reference== | ||
- | Stereochemistry | + | Stereochemistry modulates the stability of reduced interstrand cross-links arising from R- and S-alpha-CH3-gamma-OH-1,N2-propano-2'-deoxyguanosine in the 5'-CpG-3' DNA sequence., Cho YJ, Kozekov ID, Harris TM, Rizzo CJ, Stone MP, Biochemistry. 2007 Mar 13;46(10):2608-21. Epub 2007 Feb 17. PMID:[http://ispc.weizmann.ac.il//pmbin/getpm?pmid=17305317 17305317] |
[[Category: Protein complex]] | [[Category: Protein complex]] | ||
- | [[Category: Cho, Y | + | [[Category: Cho, Y J.]] |
- | [[Category: Harris, T | + | [[Category: Harris, T M.]] |
- | [[Category: Kozekov, I | + | [[Category: Kozekov, I D.]] |
- | [[Category: Rizzo, C | + | [[Category: Rizzo, C J.]] |
- | [[Category: Stone, M | + | [[Category: Stone, M P.]] |
[[Category: crotonaldehyde interstrand dna cross-link]] | [[Category: crotonaldehyde interstrand dna cross-link]] | ||
- | ''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on | + | ''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Thu Feb 21 17:43:30 2008'' |
Revision as of 15:43, 21 February 2008
|
Solution structure of reduced interstrand cross-link arising from S-alpha-methyl-gamma-OH-1,N2-propano-2'-deoxyguanosine in the 5'-CpG-3' DNA sequence
Overview
The solution structures of 5'-Cp-N2-dG-3'-R-(alpha)-CH3-propyl-5'-Cp-N2-dG-3' and 5'-Cp-N2-dG-3'-S-(alpha)-CH3-propyl-5'-Cp-N2-dG-3' interstrand DNA cross-links in the 5'-CpG-3' sequence were determined by NMR spectroscopy. These were utilized as chemically stable surrogates for the corresponding carbinolamine interstrand cross-links arising from the crotonaldehyde- and acetaldehyde-derived R- and S-alpha-CH3-gamma-OH-1,N2-propanodeoxyguanosine adducts. The results provide an explanation for the observation that interstrand cross-link formation in the 5'-CpG-3' sequence by the R- and S-alpha-CH3-gamma-OH-1,N2-propanodeoxyguanosine adducts is dependent upon stereochemistry, favoring the R-alpha-CH3-gamma-OH-1,N2-propanodeoxyguanosine adduct [Kozekov, I. D., Nechev, L. V., Moseley, M. S., Harris, C. M., Rizzo, C. J., Stone, M. P., and Harris, T. M. (2003) J. Am. Chem. Soc. 125, 50-61]. Molecular dynamics calculations, restrained by NOE-based distances and empirical restraints, revealed that both the 5'-Cp-N2-dG-3'-R-(alpha)-CH3-propyl-5'-Cp-N2-dG-3' and 5'-Cp-N2-dG-3'-S-(alpha)-CH3-propyl-5'-Cp-N2-dG-3' cross-links were located in the minor groove and retained Watson-Crick hydrogen bonds at the tandem cross-linked C.G base pairs. However, for the 5'-Cp-N2-dG-3'-R-(alpha)-CH3-propyl-5'-Cp-N2-dG-3' cross-link, the (alpha)-CH3 group was positioned in the center of the minor groove, whereas for the 5'-Cp-N2-dG-3'-S-(alpha)-CH3-propyl-5'-Cp-N2-dG-3' cross-link, the (alpha)-CH3 group was positioned in the 3' direction, showing steric interference with the DNA helix. The 5'-Cp-N2-dG-3'-S-(alpha)-CH3-propyl-5'-Cp-N2-dG-3' cross-link exhibited a lower thermal stability as evidenced by NMR spectroscopy as a function of temperature. The two cross-links also exhibited apparent differences in the conformation of the interstrand three-carbon cross-link, which may also contribute to the lower apparent thermodynamic stability of the 5'-Cp-N2-dG-3'-S-(alpha)-CH3-propyl-5'-Cp-N2-dG-3' cross-link.
About this Structure
2HMR is a Protein complex structure of sequences from [1]. Full crystallographic information is available from OCA.
Reference
Stereochemistry modulates the stability of reduced interstrand cross-links arising from R- and S-alpha-CH3-gamma-OH-1,N2-propano-2'-deoxyguanosine in the 5'-CpG-3' DNA sequence., Cho YJ, Kozekov ID, Harris TM, Rizzo CJ, Stone MP, Biochemistry. 2007 Mar 13;46(10):2608-21. Epub 2007 Feb 17. PMID:17305317
Page seeded by OCA on Thu Feb 21 17:43:30 2008