JMS/sandbox22
From Proteopedia
(Difference between revisions)
| Line 19: | Line 19: | ||
'''Molecular Tour:''' | '''Molecular Tour:''' | ||
| - | Klaus Schulten of the UIUC and Illia Solov'yov, now at the University of Southern Denmark, hypothesize that the FAD factor and just several residues of a crytochrome protein is all it takes to register the magnetic field of the earth. The <scene name='58/585079/1u3d_magnet/2'>"magnetic core"</scene> they describe involves the <scene name='58/585079/1u3d_magnet/15'>FAD factor, three tryptophan residues, as well as the aspartic residues which neighbor the FAD factor | + | Klaus Schulten of the UIUC and Illia Solov'yov, now at the University of Southern Denmark, hypothesize that the FAD factor and just several residues of a crytochrome protein is all it takes to register the magnetic field of the earth. The <scene name='58/585079/1u3d_magnet/2'>"magnetic core"</scene> they describe involves the <scene name='58/585079/1u3d_magnet/15'>FAD factor, three tryptophan residues, as well as the aspartic residues which neighbor the FAD factor</scene>. When light in the blue range hits the FAD factor it becomes excited, with the excitement diffused over its <scene name='58/585079/1u3d_magnet/8'>aromatic ring system</scene> (the atoms involved in resonance are shown with halos). Then, one of the <scene name='58/585079/1u3d_magnet/16'>three neighboring aspartic acid residues</scene> donates a hydrogen proton from its hydroxyl group (the proximate ones shown with halos). The FAD factor then receives an electron from the neighboring tryptophan, from the tryptophan's nitrogen atom (shown in halo). The proton and electron that FAD received are attached to one of the nitrogen atoms on its ring (shown with a halo). Next, this tryptophan received an electron from its <scene name='58/585079/1u3d_magnet/17'>neighboring tryptophan</scene>, and then the second tryptophan received an electron from its neighbor, a third tryptophan. Finally, the third tryptophan loses a proton to a neighboring element. ''At this stage, the magnetic core contains an entangled pair of free radicals.'' The FAD factor contains a <scene name='58/585079/1u3d_magnet/18'>free radical on the adjacent carbon atom</scene> (shown with a halo), as does the third tryptophan residue on its donating nitrogen atom(shown with a halo).<br> |
</StructureSection> | </StructureSection> | ||
Revision as of 19:42, 1 June 2014
| |||||||||||
References:
- Cryptochrome and Magnetic Sensing, Theoretical and Computational Biophysics Group at the University of Illinois at Urbana-Champaign
