1g6y
From Proteopedia
(Difference between revisions)
Line 1: | Line 1: | ||
- | [[ | + | ==CRYSTAL STRUCTURE OF THE GLOBULAR REGION OF THE PRION PROTIEN URE2 FROM YEAST SACCHAROMYCES CEREVISIAE== |
+ | <StructureSection load='1g6y' size='340' side='right' caption='[[1g6y]], [[Resolution|resolution]] 2.80Å' scene=''> | ||
+ | == Structural highlights == | ||
+ | <table><tr><td colspan='2'>[[1g6y]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Saccharomyces_cerevisiae Saccharomyces cerevisiae]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1G6Y OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1G6Y FirstGlance]. <br> | ||
+ | </td></tr><tr><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[1g6w|1g6w]]</td></tr> | ||
+ | <tr><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">URE2 OR YNL229C OR N1165 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=4932 Saccharomyces cerevisiae])</td></tr> | ||
+ | <tr><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1g6y FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1g6y OCA], [http://www.rcsb.org/pdb/explore.do?structureId=1g6y RCSB], [http://www.ebi.ac.uk/pdbsum/1g6y PDBsum]</span></td></tr> | ||
+ | <table> | ||
+ | == Evolutionary Conservation == | ||
+ | [[Image:Consurf_key_small.gif|200px|right]] | ||
+ | Check<jmol> | ||
+ | <jmolCheckbox> | ||
+ | <scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/g6/1g6y_consurf.spt"</scriptWhenChecked> | ||
+ | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | ||
+ | <text>to colour the structure by Evolutionary Conservation</text> | ||
+ | </jmolCheckbox> | ||
+ | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf]. | ||
+ | <div style="clear:both"></div> | ||
+ | <div style="background-color:#fffaf0;"> | ||
+ | == Publication Abstract from PubMed == | ||
+ | BACKGROUND: The [URE3] non-Mendelian element of the yeast S. cerevisiae is due to the propagation of a transmissible form of the protein Ure2. The infectivity of Ure2p is thought to originate from a conformational change of the normal form of the prion protein. This conformational change generates a form of Ure2p that assembles into amyloid fibrils. Hence, knowledge of the three-dimensional structure of prion proteins such as Ure2p should help in understanding the mechanism of amyloid formation associated with a number of neurodegenerative diseases. RESULTS: Here we report the three-dimensional crystal structure of the globular region of Ure2p (residues 95--354), also called the functional region, solved at 2.5 A resolution by the MAD method. The structure of Ure2p 95--354 shows a two-domain protein forming a globular dimer. The N-terminal domain is composed of a central 4 strand beta sheet flanked by four alpha helices, two on each side. In contrast, the C-terminal domain is entirely alpha-helical. The fold of Ure2p 95--354 resembles that of the beta class glutathione S-transferases (GST), in line with a weak similarity in the amino acid sequence that exists between these proteins. Ure2p dimerizes as GST does and possesses a potential ligand binding site, although it lacks GST activity. CONCLUSIONS: The structure of the functional region of Ure2p is the first crystal structure of a prion protein. Structure comparisons between Ure2p 95--354 and GST identified a 32 amino acid residues cap region in Ure2p exposed to the solvent. The cap region is highly flexible and may interact with the N-terminal region of the partner subunit in the dimer. The implication of this interaction in the assembly of Ure2p into amyloid fibrils is discussed. | ||
- | + | Structure of the globular region of the prion protein Ure2 from the yeast Saccharomyces cerevisiae.,Bousset L, Belrhali H, Janin J, Melki R, Morera S Structure. 2001 Jan 10;9(1):39-46. PMID:11342133<ref>PMID:11342133</ref> | |
- | + | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |
- | + | </div> | |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
==See Also== | ==See Also== | ||
*[[Prion|Prion]] | *[[Prion|Prion]] | ||
- | + | == References == | |
- | == | + | <references/> |
- | < | + | __TOC__ |
+ | </StructureSection> | ||
[[Category: Saccharomyces cerevisiae]] | [[Category: Saccharomyces cerevisiae]] | ||
[[Category: Belrhali, H.]] | [[Category: Belrhali, H.]] |
Revision as of 10:16, 28 September 2014
CRYSTAL STRUCTURE OF THE GLOBULAR REGION OF THE PRION PROTIEN URE2 FROM YEAST SACCHAROMYCES CEREVISIAE
|