1vcu

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 1: Line 1:
-
[[Image:1vcu.png|left|200px]]
+
==Structure of the human cytosolic sialidase Neu2 in complex with the inhibitor DANA==
 +
<StructureSection load='1vcu' size='340' side='right' caption='[[1vcu]], [[Resolution|resolution]] 2.85&Aring;' scene=''>
 +
== Structural highlights ==
 +
<table><tr><td colspan='2'>[[1vcu]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1VCU OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1VCU FirstGlance]. <br>
 +
</td></tr><tr><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=DAN:2-DEOXY-2,3-DEHYDRO-N-ACETYL-NEURAMINIC+ACID'>DAN</scene>, <scene name='pdbligand=EPE:4-(2-HYDROXYETHYL)-1-PIPERAZINE+ETHANESULFONIC+ACID'>EPE</scene><br>
 +
<tr><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[1snt|1snt]], [[1so7|1so7]]</td></tr>
 +
<tr><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Exo-alpha-sialidase Exo-alpha-sialidase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.2.1.18 3.2.1.18] </span></td></tr>
 +
<tr><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1vcu FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1vcu OCA], [http://www.rcsb.org/pdb/explore.do?structureId=1vcu RCSB], [http://www.ebi.ac.uk/pdbsum/1vcu PDBsum]</span></td></tr>
 +
<table>
 +
== Evolutionary Conservation ==
 +
[[Image:Consurf_key_small.gif|200px|right]]
 +
Check<jmol>
 +
<jmolCheckbox>
 +
<scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/vc/1vcu_consurf.spt"</scriptWhenChecked>
 +
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
 +
<text>to colour the structure by Evolutionary Conservation</text>
 +
</jmolCheckbox>
 +
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf].
 +
<div style="clear:both"></div>
 +
<div style="background-color:#fffaf0;">
 +
== Publication Abstract from PubMed ==
 +
Gangliosides play key roles in cell differentiation, cell-cell interactions, and transmembrane signaling. Sialidases hydrolyze sialic acids to produce asialo compounds, which is the first step of degradation processes of glycoproteins and gangliosides. Sialidase involvement has been implicated in some lysosomal storage disorders such as sialidosis and galactosialidosis. Neu2 is a recently identified human cytosolic sialidase. Here we report the first high resolution x-ray structures of mammalian sialidase, human Neu2, in its apo form and in complex with an inhibitor, 2-deoxy-2,3-dehydro-N-acetylneuraminic acid (DANA). The structure shows the canonical six-blade beta-propeller observed in viral and bacterial sialidases with its active site in a shallow crevice. In the complex structure, the inhibitor lies in the catalytic crevice surrounded by ten amino acids. In particular, the arginine triad, conserved among sialidases, aids in the proper positioning of the carboxylate group of DANA within the active site region. The tyrosine residue, Tyr(334), conserved among mammalian and bacterial sialidases as well as in viral neuraminidases, facilitates the enzymatic reaction by stabilizing a putative carbonium ion in the transition state. The loops containing Glu(111) and the catalytic aspartate Asp(46) are disordered in the apo form but upon binding of DANA become ordered to adopt two short alpha-helices to cover the inhibitor, illustrating the dynamic nature of substrate recognition. The N-acetyl and glycerol moieties of DANA are recognized by Neu2 residues not shared by bacterial sialidases and viral neuraminidases, which can be regarded as a key structural difference for potential drug design against bacteria, influenza, and other viruses.
-
{{STRUCTURE_1vcu| PDB=1vcu | SCENE= }}
+
Crystal structure of the human cytosolic sialidase Neu2. Evidence for the dynamic nature of substrate recognition.,Chavas LM, Tringali C, Fusi P, Venerando B, Tettamanti G, Kato R, Monti E, Wakatsuki S J Biol Chem. 2005 Jan 7;280(1):469-75. Epub 2004 Oct 22. PMID:15501818<ref>PMID:15501818</ref>
-
===Structure of the human cytosolic sialidase Neu2 in complex with the inhibitor DANA===
+
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
-
 
+
</div>
-
{{ABSTRACT_PUBMED_15501818}}
+
-
 
+
-
==About this Structure==
+
-
[[1vcu]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1VCU OCA].
+
==See Also==
==See Also==
*[[Neuraminidase|Neuraminidase]]
*[[Neuraminidase|Neuraminidase]]
-
 
+
== References ==
-
==Reference==
+
<references/>
-
<ref group="xtra">PMID:015501818</ref><references group="xtra"/>
+
__TOC__
 +
</StructureSection>
[[Category: Exo-alpha-sialidase]]
[[Category: Exo-alpha-sialidase]]
[[Category: Homo sapiens]]
[[Category: Homo sapiens]]

Revision as of 20:04, 28 September 2014

Structure of the human cytosolic sialidase Neu2 in complex with the inhibitor DANA

1vcu, resolution 2.85Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Views
Personal tools
Navigation
Toolbox