2f2k
From Proteopedia
(Difference between revisions)
Line 1: | Line 1: | ||
- | [[ | + | ==Aldose reductase tertiary complex with NADPH and DEG== |
+ | <StructureSection load='2f2k' size='340' side='right' caption='[[2f2k]], [[Resolution|resolution]] 1.94Å' scene=''> | ||
+ | == Structural highlights == | ||
+ | <table><tr><td colspan='2'>[[2f2k]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2F2K OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2F2K FirstGlance]. <br> | ||
+ | </td></tr><tr><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=NDP:NADPH+DIHYDRO-NICOTINAMIDE-ADENINE-DINUCLEOTIDE+PHOSPHATE'>NDP</scene>, <scene name='pdbligand=TGG:GAMMA-GLUTAMYL-S-(1,2-DICARBOXYETHYL)CYSTEINYLGLYCINE'>TGG</scene><br> | ||
+ | <tr><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[1ads|1ads]]</td></tr> | ||
+ | <tr><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">AKR1B1, ALDR1 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 Homo sapiens])</td></tr> | ||
+ | <tr><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Aldehyde_reductase Aldehyde reductase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=1.1.1.21 1.1.1.21] </span></td></tr> | ||
+ | <tr><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2f2k FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2f2k OCA], [http://www.rcsb.org/pdb/explore.do?structureId=2f2k RCSB], [http://www.ebi.ac.uk/pdbsum/2f2k PDBsum]</span></td></tr> | ||
+ | <table> | ||
+ | == Evolutionary Conservation == | ||
+ | [[Image:Consurf_key_small.gif|200px|right]] | ||
+ | Check<jmol> | ||
+ | <jmolCheckbox> | ||
+ | <scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/f2/2f2k_consurf.spt"</scriptWhenChecked> | ||
+ | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | ||
+ | <text>to colour the structure by Evolutionary Conservation</text> | ||
+ | </jmolCheckbox> | ||
+ | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf]. | ||
+ | <div style="clear:both"></div> | ||
+ | <div style="background-color:#fffaf0;"> | ||
+ | == Publication Abstract from PubMed == | ||
+ | Aldose reductase (AR) is a monomeric NADPH-dependent oxidoreductase that catalyzes the reduction of aldehydes, ketones, and aldo-sugars. AR has been linked to the development of hyperglycemic injury and is a clinical target for the treatment of secondary diabetic complications. In addition to reducing glucose, AR is key regulator of cell signaling through it's reduction of aldehydes derived from lipoproteins and membrane phospholipids. AR catalyzes the reduction of glutathione conjugates of unsaturated aldehydes with higher catalytic efficiency than free aldehydes. The X-ray structure of human AR holoenzyme in complex with the glutathione analogue S-(1,2-dicarboxyethyl) glutathione (DCEG) was determined at a resolution of 1.94 A. The distal carboxylate group of DCEG's dicarboxyethyl moiety interacted with the conserved AR anion binding site residues Tyr48, His110, and Trp111. The bound DCEG's glutathione backbone adopted the low-energy Y-shape form. The C-terminal carboxylate of DCEG glutathione's glycine formed hydrogen bonds to Leu301 and Ser302, while the remaining interactions between DCEG and AR were hydrophobic, permitting significant flexibility of the AR and glutathione (GS) analogue interaction. The observed conformation and interactions of DCEG with AR were consistent with our previously published molecular dynamics model of glutathionyl-propanal binding to AR. The current structure identifies major interactions of glutathione conjugates with the AR active-site residues. | ||
- | + | Structure of a glutathione conjugate bound to the active site of aldose reductase.,Singh R, White MA, Ramana KV, Petrash JM, Watowich SJ, Bhatnagar A, Srivastava SK Proteins. 2006 Jul 1;64(1):101-10. PMID:16639747<ref>PMID:16639747</ref> | |
- | + | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |
- | + | </div> | |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
==See Also== | ==See Also== | ||
*[[Aldose Reductase|Aldose Reductase]] | *[[Aldose Reductase|Aldose Reductase]] | ||
- | + | == References == | |
- | == | + | <references/> |
- | < | + | __TOC__ |
+ | </StructureSection> | ||
[[Category: Aldehyde reductase]] | [[Category: Aldehyde reductase]] | ||
[[Category: Homo sapiens]] | [[Category: Homo sapiens]] |
Revision as of 02:49, 29 September 2014
Aldose reductase tertiary complex with NADPH and DEG
|