1rh4
From Proteopedia
(Difference between revisions)
m (Protected "1rh4" [edit=sysop:move=sysop]) |
|||
Line 1: | Line 1: | ||
- | [[ | + | ==RH4 DESIGNED RIGHT-HANDED COILED COIL TETRAMER== |
+ | <StructureSection load='1rh4' size='340' side='right' caption='[[1rh4]], [[Resolution|resolution]] 1.90Å' scene=''> | ||
+ | == Structural highlights == | ||
+ | <table><tr><td colspan='2'>[[1rh4]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Synthetic_construct Synthetic construct]. The October 2005 RCSB PDB [http://pdb.rcsb.org/pdb/static.do?p=education_discussion/molecule_of_the_month/index.html Molecule of the Month] feature on ''Designer Proteins'' by David S. Goodsell is [http://dx.doi.org/10.2210/rcsb_pdb/mom_2005_10 10.2210/rcsb_pdb/mom_2005_10]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1RH4 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1RH4 FirstGlance]. <br> | ||
+ | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=IPA:ISOPROPYL+ALCOHOL'>IPA</scene></td></tr> | ||
+ | <tr id='NonStdRes'><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=ACE:ACETYL+GROUP'>ACE</scene>, <scene name='pdbligand=IIL:ISO-ISOLEUCINE'>IIL</scene>, <scene name='pdbligand=NH2:AMINO+GROUP'>NH2</scene></td></tr> | ||
+ | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1rh4 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1rh4 OCA], [http://www.rcsb.org/pdb/explore.do?structureId=1rh4 RCSB], [http://www.ebi.ac.uk/pdbsum/1rh4 PDBsum]</span></td></tr> | ||
+ | </table> | ||
+ | <div style="background-color:#fffaf0;"> | ||
+ | == Publication Abstract from PubMed == | ||
+ | Recent advances in computational techniques have allowed the design of precise side-chain packing in proteins with predetermined, naturally occurring backbone structures. Because these methods do not model protein main-chain flexibility, they lack the breadth to explore novel backbone conformations. Here the de novo design of a family of alpha-helical bundle proteins with a right-handed superhelical twist is described. In the design, the overall protein fold was specified by hydrophobic-polar residue patterning, whereas the bundle oligomerization state, detailed main-chain conformation, and interior side-chain rotamers were engineered by computational enumerations of packing in alternate backbone structures. Main-chain flexibility was incorporated through an algebraic parameterization of the backbone. The designed peptides form alpha-helical dimers, trimers, and tetramers in accord with the design goals. The crystal structure of the tetramer matches the designed structure in atomic detail. | ||
- | + | High-resolution protein design with backbone freedom.,Harbury PB, Plecs JJ, Tidor B, Alber T, Kim PS Science. 1998 Nov 20;282(5393):1462-7. PMID:9822371<ref>PMID:9822371</ref> | |
- | + | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |
- | + | </div> | |
- | + | == References == | |
- | + | <references/> | |
- | + | __TOC__ | |
- | + | </StructureSection> | |
- | + | ||
- | == | + | |
- | < | + | |
[[Category: Designer Proteins]] | [[Category: Designer Proteins]] | ||
[[Category: RCSB PDB Molecule of the Month]] | [[Category: RCSB PDB Molecule of the Month]] |
Revision as of 08:31, 8 October 2014
RH4 DESIGNED RIGHT-HANDED COILED COIL TETRAMER
|