1sm9
From Proteopedia
Line 1: | Line 1: | ||
- | [[Image:1sm9.jpg|left|200px]] | + | [[Image:1sm9.jpg|left|200px]] |
- | + | ||
- | '''Crystal Structure Of An Engineered K274RN276D Double Mutant of Xylose Reductase From Candida Tenuis Optimized To Utilize NAD''' | + | {{Structure |
+ | |PDB= 1sm9 |SIZE=350|CAPTION= <scene name='initialview01'>1sm9</scene>, resolution 2.20Å | ||
+ | |SITE= | ||
+ | |LIGAND= <scene name='pdbligand=NAD:NICOTINAMIDE-ADENINE-DINUCLEOTIDE'>NAD</scene> | ||
+ | |ACTIVITY= [http://en.wikipedia.org/wiki/Aldehyde_reductase Aldehyde reductase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=1.1.1.21 1.1.1.21] | ||
+ | |GENE= | ||
+ | }} | ||
+ | |||
+ | '''Crystal Structure Of An Engineered K274RN276D Double Mutant of Xylose Reductase From Candida Tenuis Optimized To Utilize NAD''' | ||
+ | |||
==Overview== | ==Overview== | ||
Line 7: | Line 16: | ||
==About this Structure== | ==About this Structure== | ||
- | 1SM9 is a [ | + | 1SM9 is a [[Single protein]] structure of sequence from [http://en.wikipedia.org/wiki/Candida_tenuis Candida tenuis]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1SM9 OCA]. |
==Reference== | ==Reference== | ||
- | The coenzyme specificity of Candida tenuis xylose reductase (AKR2B5) explored by site-directed mutagenesis and X-ray crystallography., Petschacher B, Leitgeb S, Kavanagh KL, Wilson DK, Nidetzky B, Biochem J. 2005 Jan 1;385(Pt 1):75-83. PMID:[http:// | + | The coenzyme specificity of Candida tenuis xylose reductase (AKR2B5) explored by site-directed mutagenesis and X-ray crystallography., Petschacher B, Leitgeb S, Kavanagh KL, Wilson DK, Nidetzky B, Biochem J. 2005 Jan 1;385(Pt 1):75-83. PMID:[http://www.ncbi.nlm.nih.gov/pubmed/15320875 15320875] |
[[Category: Aldehyde reductase]] | [[Category: Aldehyde reductase]] | ||
[[Category: Candida tenuis]] | [[Category: Candida tenuis]] | ||
Line 26: | Line 35: | ||
[[Category: xylose metabolism]] | [[Category: xylose metabolism]] | ||
- | ''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Thu | + | ''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Thu Mar 20 14:06:51 2008'' |
Revision as of 12:06, 20 March 2008
| |||||||
, resolution 2.20Å | |||||||
---|---|---|---|---|---|---|---|
Ligands: | |||||||
Activity: | Aldehyde reductase, with EC number 1.1.1.21 | ||||||
Coordinates: | save as pdb, mmCIF, xml |
Crystal Structure Of An Engineered K274RN276D Double Mutant of Xylose Reductase From Candida Tenuis Optimized To Utilize NAD
Overview
CtXR (xylose reductase from the yeast Candida tenuis; AKR2B5) can utilize NADPH or NADH as co-substrate for the reduction of D-xylose into xylitol, NADPH being preferred approx. 33-fold. X-ray structures of CtXR bound to NADP+ and NAD+ have revealed two different protein conformations capable of accommodating the presence or absence of the coenzyme 2'-phosphate group. Here we have used site-directed mutagenesis to replace interactions specific to the enzyme-NADP+ complex with the aim of engineering the co-substrate-dependent conformational switch towards improved NADH selectivity. Purified single-site mutants K274R (Lys274-->Arg), K274M, K274G, S275A, N276D, R280H and the double mutant K274R-N276D were characterized by steady-state kinetic analysis of enzymic D-xylose reductions with NADH and NADPH at 25 degrees C (pH 7.0). The results reveal between 2- and 193-fold increases in NADH versus NADPH selectivity in the mutants, compared with the wild-type, with only modest alterations of the original NADH-linked xylose specificity and catalytic-centre activity. Catalytic reaction profile analysis demonstrated that all mutations produced parallel effects of similar magnitude on ground-state binding of coenzyme and transition state stabilization. The crystal structure of the double mutant showing the best improvement of coenzyme selectivity versus wild-type and exhibiting a 5-fold preference for NADH over NADPH was determined in a binary complex with NAD+ at 2.2 A resolution.
About this Structure
1SM9 is a Single protein structure of sequence from Candida tenuis. Full crystallographic information is available from OCA.
Reference
The coenzyme specificity of Candida tenuis xylose reductase (AKR2B5) explored by site-directed mutagenesis and X-ray crystallography., Petschacher B, Leitgeb S, Kavanagh KL, Wilson DK, Nidetzky B, Biochem J. 2005 Jan 1;385(Pt 1):75-83. PMID:15320875
Page seeded by OCA on Thu Mar 20 14:06:51 2008