4bbj
From Proteopedia
(Difference between revisions)
| Line 1: | Line 1: | ||
| - | + | ==ATPase crystal structure== | |
| - | === | + | <StructureSection load='4bbj' size='340' side='right' caption='[[4bbj]], [[Resolution|resolution]] 2.75Å' scene=''> |
| - | + | == Structural highlights == | |
| + | <table><tr><td colspan='2'>[[4bbj]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Legionella_pneumophila_subsp._pneumophila Legionella pneumophila subsp. pneumophila]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4BBJ OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4BBJ FirstGlance]. <br> | ||
| + | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=CE1:O-DODECANYL+OCTAETHYLENE+GLYCOL'>CE1</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene>, <scene name='pdbligand=NAD:NICOTINAMIDE-ADENINE-DINUCLEOTIDE'>NAD</scene>, <scene name='pdbligand=PC:PHOSPHOCHOLINE'>PC</scene></td></tr> | ||
| + | <tr id='NonStdRes'><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=BFD:ASPARTATE+BERYLLIUM+TRIFLUORIDE'>BFD</scene></td></tr> | ||
| + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4bbj FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4bbj OCA], [http://www.rcsb.org/pdb/explore.do?structureId=4bbj RCSB], [http://www.ebi.ac.uk/pdbsum/4bbj PDBsum]</span></td></tr> | ||
| + | </table> | ||
| + | <div style="background-color:#fffaf0;"> | ||
| + | == Publication Abstract from PubMed == | ||
| + | Heavy metals in cells are typically regulated by PIB-type ATPases. The first structure of the class, a Cu+-ATPase from Legionella pneumophila (LpCopA), outlined a copper transport pathway across the membrane, which was inferred to be occluded. Here we show by molecular dynamics simulations that extracellular water solvated the transmembrane (TM) domain, results indicative of a Cu+-release pathway. Furthermore, a new LpCopA crystal structure determined at 2.8-A resolution, trapped in the preceding E2P state, delineated the same passage, and site-directed-mutagenesis activity assays support a functional role for the conduit. The structural similarities between the TM domains of the two conformations suggest that Cu+-ATPases couple dephosphorylation and ion extrusion differently than do the well-characterized PII-type ATPases. The ion pathway explains why certain Menkes' and Wilson's disease mutations impair protein function and points to a site for inhibitors targeting pathogens. | ||
| - | + | Copper-transporting P-type ATPases use a unique ion-release pathway.,Andersson M, Mattle D, Sitsel O, Klymchuk T, Nielsen AM, Moller LB, White SH, Nissen P, Gourdon P Nat Struct Mol Biol. 2013 Dec 8. doi: 10.1038/nsmb.2721. PMID:24317491<ref>PMID:24317491</ref> | |
| - | + | ||
| - | == | + | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> |
| - | + | </div> | |
| - | [[Category: Gourdon, P | + | == References == |
| - | [[Category: Mattle, D | + | <references/> |
| - | [[Category: Nissen, P | + | __TOC__ |
| + | </StructureSection> | ||
| + | [[Category: Legionella pneumophila subsp. pneumophila]] | ||
| + | [[Category: Gourdon, P]] | ||
| + | [[Category: Mattle, D]] | ||
| + | [[Category: Nissen, P]] | ||
[[Category: Cation transport protein]] | [[Category: Cation transport protein]] | ||
[[Category: Cell membrane]] | [[Category: Cell membrane]] | ||
Revision as of 14:17, 5 January 2015
ATPase crystal structure
| |||||||||||
Categories: Legionella pneumophila subsp. pneumophila | Gourdon, P | Mattle, D | Nissen, P | Cation transport protein | Cell membrane | Hepatolenticular degeneration | Hydrolase | Membrane protein | Menkes disease | Sarcoplasmic reticulum calcium-transporting atpase | Structure-activity relationship | Wilson disease
