4zlf

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 10: Line 10:
<div style="background-color:#fffaf0;">
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
== Publication Abstract from PubMed ==
-
A novel phosphorylase was characterized as new member of glycoside hydrolase family 94 from the cellulolytic bacterium Xanthomonas campestris and the fungus Neurospora crassa. The enzyme catalyzed reversible phosphorolysis of cellobionic acid. We propose 4-O-beta-D-glucopyranosyl-D-gluconic acid: phosphate alpha-D-glucosyltransferase as the systematic name and cellobionic acid phosphorylase as the short names for the novel enzyme. Several cellulolytic fungi of the phylum Ascomycota also possess homologous proteins. We, therefore, suggest that the enzyme plays a crucial role in cellulose degradation where cellobionic acid as oxidized cellulolytic product is converted into alpha-D-glucose 1-phosphate and D-gluconic acid to enter glycolysis and the pentose phosphate pathway, respectively.
+
The microbial oxidative cellulose degradation system is attracting significant research attention after the recent discovery of lytic polysaccharide mono-oxygenases. A primary product of the oxidative and hydrolytic cellulose degradation system is cellobionic acid (CbA), the aldonic acid form of cellobiose. We previously demonstrated that the intracellular enzyme belonging to glycoside hydrolase (GH) family 94 from cellulolytic fungus and bacterium is cellobionic acid phosphorylase (CBAP), which catalyzes reversible phosphorolysis of CbA into glucose 1-phosphate and gluconic acid (GlcA). In this report we describe the biochemical characterization and the three-dimensional structure of CBAP from the marine cellulolytic bacterium Saccharophagus degradans. Structures of ligand-free and complex forms with CbA, GlcA, and a synthetic disaccharide product from glucuronic acid (GlcUA) were determined at resolutions of up to 1.6 A. The active site is located near the dimer interface. At subsite +1, the carboxylate group of GlcA and CbA is recognized by Arg-609 and Lys-613. Additionally, one residue from the neighboring protomer (Gln-190) is involved in the carboxylate recognition of GlcA. A mutational analysis indicated that these residues are critical for the binding and catalysis of the aldonic and uronic acid acceptors GlcA and GlcUA. Structural and sequence comparisons with other GH94 phosphorylases revealed that CBAPs have a unique subsite +1 with a distinct amino acid residue conservation pattern at this site. This study provides molecular insight into the energetically efficient metabolic pathway of oxidized sugars that links the oxidative cellulolytic pathway to the glycolytic and pentose phosphate pathways in cellulolytic microbes.
-
Discovery of cellobionic acid phosphorylase in cellulolytic bacteria and fungi.,Nihira T, Saito Y, Nishimoto M, Kitaoka M, Igarashi K, Ohtsubo K, Nakai H FEBS Lett. 2013 Nov 1;587(21):3556-61. doi: 10.1016/j.febslet.2013.09.014. Epub, 2013 Sep 19. PMID:24055472<ref>PMID:24055472</ref>
+
Crystal structure and substrate recognition of cellobionic acid phosphorylase playing a key role in oxidative cellulose degradation by microbes.,Nam YW, Nihira T, Arakawa T, Saito Y, Kitaoka M, Nakai H, Fushinobu S J Biol Chem. 2015 Jun 3. pii: jbc.M115.664664. PMID:26041776<ref>PMID:26041776</ref>
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>

Revision as of 08:29, 17 June 2015

Cellobionic acid phosphorylase - cellobionic acid complex

4zlf, resolution 1.60Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools