Proteins: primary and secondary structure

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 6: Line 6:
:*Polypeptide chain backbone consist in a monotonous succession in wich the following sequenze repeats: <scene name='60/603296/Primaria3/8'>alfa carbon</scene>, <scene name='60/603296/Primaria3/9'>carboxyl group carbon</scene>, <scene name='60/603296/Primaria3/11'>amino group nitrogen</scene>. Minding the restrictions to free rotation in ''peptide bond'', we can visualize the polypeptide chain as a succession of <scene name='60/603296/Primaria3/12'>rigid flats</scene>. Each of these rigid flats can freely rotate respect each other.
:*Polypeptide chain backbone consist in a monotonous succession in wich the following sequenze repeats: <scene name='60/603296/Primaria3/8'>alfa carbon</scene>, <scene name='60/603296/Primaria3/9'>carboxyl group carbon</scene>, <scene name='60/603296/Primaria3/11'>amino group nitrogen</scene>. Minding the restrictions to free rotation in ''peptide bond'', we can visualize the polypeptide chain as a succession of <scene name='60/603296/Primaria3/12'>rigid flats</scene>. Each of these rigid flats can freely rotate respect each other.
-
*'''Secondary structure'''.- In most proteins are two main types of secondary structure.
+
*'''Secondary structure'''.- In most proteins there are two main types of secondary structure.
:*<scene name='60/603296/Secundaria/4'>Alfa helix</scene>.- It is a helical structure with a thread pitch of 0.56 nm. Let's go to a <scene name='60/603296/Secundaria/5'>polar view</scene>. Now let's <scene name='60/603296/Secundaria/7'>hide hydrogen atoms</scene>. The polypeptide chain backbone is coiled and placed at the center of structure, while amino acid side chains protrude outward from this backbone. Let's <scene name='60/603296/Secundaria/8'>hide side chains</scene> for a better understanding. Now, let's back to a <scene name='60/603296/Secundaria/10'>side view</scene>. A <scene name='60/603296/Secundaria/11'>ribbon model</scene> highlights the helical folding of the backbone. Using again a <scene name='60/603296/Secundaria/12'>ball and stick model</scene> we recover <scene name='60/603296/Secundaria/13'>side chains</scene>, now highlighted with a spectral color series. ''Alfa helix'' structure becomes stabilized by many <scene name='60/603296/Secundaria/14'>hydrogen bonds</scene>. All peptide groups in the chain are involved in these hydrogen bonds. <scene name='60/603296/Secundaria/15'>Zoom in</scene> to a better understanding.
:*<scene name='60/603296/Secundaria/4'>Alfa helix</scene>.- It is a helical structure with a thread pitch of 0.56 nm. Let's go to a <scene name='60/603296/Secundaria/5'>polar view</scene>. Now let's <scene name='60/603296/Secundaria/7'>hide hydrogen atoms</scene>. The polypeptide chain backbone is coiled and placed at the center of structure, while amino acid side chains protrude outward from this backbone. Let's <scene name='60/603296/Secundaria/8'>hide side chains</scene> for a better understanding. Now, let's back to a <scene name='60/603296/Secundaria/10'>side view</scene>. A <scene name='60/603296/Secundaria/11'>ribbon model</scene> highlights the helical folding of the backbone. Using again a <scene name='60/603296/Secundaria/12'>ball and stick model</scene> we recover <scene name='60/603296/Secundaria/13'>side chains</scene>, now highlighted with a spectral color series. ''Alfa helix'' structure becomes stabilized by many <scene name='60/603296/Secundaria/14'>hydrogen bonds</scene>. All peptide groups in the chain are involved in these hydrogen bonds. <scene name='60/603296/Secundaria/15'>Zoom in</scene> to a better understanding.
:*Primary structure specifies secondary structure, i.e., is the amino acid sequence which determines that a polypeptide chain folds resulting a alfa helix or other secondary structure. Let's consider the effects of <scene name='60/603296/Secundaria/20'>electrical charged residues</scene> of either sign and the <scene name='60/603296/Secundaria/21'>side chains size</scene>.
:*Primary structure specifies secondary structure, i.e., is the amino acid sequence which determines that a polypeptide chain folds resulting a alfa helix or other secondary structure. Let's consider the effects of <scene name='60/603296/Secundaria/20'>electrical charged residues</scene> of either sign and the <scene name='60/603296/Secundaria/21'>side chains size</scene>.

Revision as of 18:43, 21 March 2016

Drag the structure with the mouse to rotate

References

Personal tools