5ivw
From Proteopedia
(Difference between revisions)
Line 12: | Line 12: | ||
== Function == | == Function == | ||
[[http://www.uniprot.org/uniprot/TF2H3_HUMAN TF2H3_HUMAN]] Component of the core-TFIIH basal transcription factor involved in nucleotide excision repair (NER) of DNA and, when complexed to CAK, in RNA transcription by RNA polymerase II. Anchors XPB. [[http://www.uniprot.org/uniprot/TF2H2_HUMAN TF2H2_HUMAN]] Component of the core-TFIIH basal transcription factor involved in nucleotide excision repair (NER) of DNA and, when complexed to CAK, in RNA transcription by RNA polymerase II. The N-terminus interacts with and regulates XPD whereas an intact C-terminus is required for a successful escape of RNAP II form the promoter. [[http://www.uniprot.org/uniprot/ERCC2_HUMAN ERCC2_HUMAN]] ATP-dependent 5'-3' DNA helicase, component of the core-TFIIH basal transcription factor. Involved in nucleotide excision repair (NER) of DNA by opening DNA around the damage, and in RNA transcription by RNA polymerase II by anchoring the CDK-activating kinase (CAK) complex, composed of CDK7, cyclin H and MAT1, to the core-TFIIH complex. Involved in the regulation of vitamin-D receptor activity. As part of the mitotic spindle-associated MMXD complex it plays a role in chromosome segregation. Might have a role in aging process and could play a causative role in the generation of skin cancers.<ref>PMID:10024882</ref> <ref>PMID:15494306</ref> <ref>PMID:20797633</ref> <ref>PMID:8413672</ref> [[http://www.uniprot.org/uniprot/ERCC3_HUMAN ERCC3_HUMAN]] ATP-dependent 3'-5' DNA helicase, component of the core-TFIIH basal transcription factor, involved in nucleotide excision repair (NER) of DNA and, when complexed to CAK, in RNA transcription by RNA polymerase II. Acts by opening DNA either around the RNA transcription start site or the DNA damage.<ref>PMID:10024882</ref> [[http://www.uniprot.org/uniprot/TF2H5_HUMAN TF2H5_HUMAN]] Component of the TFIIH basal transcription factor involved in nucleotide excision repair (NER) of DNA and, when complexed to CAK, in RNA transcription by RNA polymerase II. Necessary for the stability of the TFIIH complex and for the presence of normal levels of TFIIH in the cell.<ref>PMID:15220921</ref> [[http://www.uniprot.org/uniprot/TF2H4_HUMAN TF2H4_HUMAN]] Component of the core-TFIIH basal transcription factor involved in nucleotide excision repair (NER) of DNA and, when complexed to CAK, in RNA transcription by RNA polymerase II. | [[http://www.uniprot.org/uniprot/TF2H3_HUMAN TF2H3_HUMAN]] Component of the core-TFIIH basal transcription factor involved in nucleotide excision repair (NER) of DNA and, when complexed to CAK, in RNA transcription by RNA polymerase II. Anchors XPB. [[http://www.uniprot.org/uniprot/TF2H2_HUMAN TF2H2_HUMAN]] Component of the core-TFIIH basal transcription factor involved in nucleotide excision repair (NER) of DNA and, when complexed to CAK, in RNA transcription by RNA polymerase II. The N-terminus interacts with and regulates XPD whereas an intact C-terminus is required for a successful escape of RNAP II form the promoter. [[http://www.uniprot.org/uniprot/ERCC2_HUMAN ERCC2_HUMAN]] ATP-dependent 5'-3' DNA helicase, component of the core-TFIIH basal transcription factor. Involved in nucleotide excision repair (NER) of DNA by opening DNA around the damage, and in RNA transcription by RNA polymerase II by anchoring the CDK-activating kinase (CAK) complex, composed of CDK7, cyclin H and MAT1, to the core-TFIIH complex. Involved in the regulation of vitamin-D receptor activity. As part of the mitotic spindle-associated MMXD complex it plays a role in chromosome segregation. Might have a role in aging process and could play a causative role in the generation of skin cancers.<ref>PMID:10024882</ref> <ref>PMID:15494306</ref> <ref>PMID:20797633</ref> <ref>PMID:8413672</ref> [[http://www.uniprot.org/uniprot/ERCC3_HUMAN ERCC3_HUMAN]] ATP-dependent 3'-5' DNA helicase, component of the core-TFIIH basal transcription factor, involved in nucleotide excision repair (NER) of DNA and, when complexed to CAK, in RNA transcription by RNA polymerase II. Acts by opening DNA either around the RNA transcription start site or the DNA damage.<ref>PMID:10024882</ref> [[http://www.uniprot.org/uniprot/TF2H5_HUMAN TF2H5_HUMAN]] Component of the TFIIH basal transcription factor involved in nucleotide excision repair (NER) of DNA and, when complexed to CAK, in RNA transcription by RNA polymerase II. Necessary for the stability of the TFIIH complex and for the presence of normal levels of TFIIH in the cell.<ref>PMID:15220921</ref> [[http://www.uniprot.org/uniprot/TF2H4_HUMAN TF2H4_HUMAN]] Component of the core-TFIIH basal transcription factor involved in nucleotide excision repair (NER) of DNA and, when complexed to CAK, in RNA transcription by RNA polymerase II. | ||
+ | <div style="background-color:#fffaf0;"> | ||
+ | == Publication Abstract from PubMed == | ||
+ | In eukaryotic transcription initiation, a large multi-subunit pre-initiation complex (PIC) that assembles at the core promoter is required for the opening of the duplex DNA and identification of the start site for transcription by RNA polymerase II. Here we use cryo-electron microscropy (cryo-EM) to determine near-atomic resolution structures of the human PIC in a closed state (engaged with duplex DNA), an open state (engaged with a transcription bubble), and an initially transcribing complex (containing six base pairs of DNA-RNA hybrid). Our studies provide structures for previously uncharacterized components of the PIC, such as TFIIE and TFIIH, and segments of TFIIA, TFIIB and TFIIF. Comparison of the different structures reveals the sequential conformational changes that accompany the transition from each state to the next throughout the transcription initiation process. This analysis illustrates the key role of TFIIB in transcription bubble stabilization and provides strong structural support for a translocase activity of XPB. | ||
+ | |||
+ | Near-atomic resolution visualization of human transcription promoter opening.,He Y, Yan C, Fang J, Inouye C, Tjian R, Ivanov I, Nogales E Nature. 2016 May 11;533(7603):359-65. doi: 10.1038/nature17970. PMID:27193682<ref>PMID:27193682</ref> | ||
+ | |||
+ | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | ||
+ | </div> | ||
+ | <div class="pdbe-citations 5ivw" style="background-color:#fffaf0;"></div> | ||
== References == | == References == | ||
<references/> | <references/> |
Revision as of 15:35, 23 June 2016
Human core TFIIH bound to DNA within the PIC
|
Categories: DNA helicase | Homo sapiens | Fang, J | He, Y | Inouye, C | Ivanov, I | Nogales, E | Tjian, R | Yan, C | Human | Initiation | Rna polymerase ii | Transcription-dna complex