5kd2
From Proteopedia
(Difference between revisions)
Line 8: | Line 8: | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5kd2 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5kd2 OCA], [http://pdbe.org/5kd2 PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=5kd2 RCSB], [http://www.ebi.ac.uk/pdbsum/5kd2 PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=5kd2 ProSAT]</span></td></tr> | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5kd2 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5kd2 OCA], [http://pdbe.org/5kd2 PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=5kd2 RCSB], [http://www.ebi.ac.uk/pdbsum/5kd2 PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=5kd2 ProSAT]</span></td></tr> | ||
</table> | </table> | ||
+ | <div style="background-color:#fffaf0;"> | ||
+ | == Publication Abstract from PubMed == | ||
+ | The vast majority of proteins are posttranslationally altered, with the addition of covalently linked sugars (glycosylation) being one of the most abundant modifications. However, despite the hydrolysis of protein peptide bonds by peptidases being a process essential to all life on Earth, the fundamental details of how peptidases accommodate posttranslational modifications, including glycosylation, has not been addressed. Through biochemical analyses and X-ray crystallographic structures we show that to hydrolyze their substrates, three structurally related metallopeptidases require the specific recognition of O-linked glycan modifications via carbohydrate-specific subsites immediately adjacent to their peptidase catalytic machinery. The three peptidases showed selectivity for different glycans, revealing protein-specific adaptations to particular glycan modifications, yet always cleaved the peptide bond immediately preceding the glycosylated residue. This insight builds upon the paradigm of how peptidases recognize substrates and provides a molecular understanding of glycoprotein degradation. | ||
+ | |||
+ | Recognition of protein-linked glycans as a determinant of peptidase activity.,Noach I, Ficko-Blean E, Pluvinage B, Stuart C, Jenkins ML, Brochu D, Buenbrazo N, Wakarchuk W, Burke JE, Gilbert M, Boraston AB Proc Natl Acad Sci U S A. 2017 Jan 17. pii: 201615141. doi:, 10.1073/pnas.1615141114. PMID:28096352<ref>PMID:28096352</ref> | ||
+ | |||
+ | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | ||
+ | </div> | ||
+ | <div class="pdbe-citations 5kd2" style="background-color:#fffaf0;"></div> | ||
+ | == References == | ||
+ | <references/> | ||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> |
Revision as of 10:59, 1 February 2017
BT_4244 metallopeptidase from Bacteroides thetaiotaomicron
|