6g4s
From Proteopedia
(Difference between revisions)
Line 11: | Line 11: | ||
== Function == | == Function == | ||
[[http://www.uniprot.org/uniprot/TSR1_HUMAN TSR1_HUMAN]] Required during maturation of the 40S ribosomal subunit in the nucleolus. [[http://www.uniprot.org/uniprot/BYST_HUMAN BYST_HUMAN]] Required for processing of 20S pre-rRNA precursor and biogenesis of 40S ribosomal subunits. May be required for trophinin-dependent regulation of cell adhesion during implantation of human embryos.<ref>PMID:17360433</ref> <ref>PMID:17381424</ref> [[http://www.uniprot.org/uniprot/PNO1_HUMAN PNO1_HUMAN]] Positively regulates dimethylation of two adjacent adenosines in the loop of a conserved hairpin near the 3'-end of 18S rRNA (PubMed:25851604).<ref>PMID:25851604</ref> [[http://www.uniprot.org/uniprot/RS24_HUMAN RS24_HUMAN]] Required for processing of pre-rRNA and maturation of 40S ribosomal subunits.<ref>PMID:18230666</ref> [[http://www.uniprot.org/uniprot/RS18_HUMAN RS18_HUMAN]] Located at the top of the head of the 40S subunit, it contacts several helices of the 18S rRNA (By similarity).[HAMAP-Rule:MF_01315] [[http://www.uniprot.org/uniprot/RS7_HUMAN RS7_HUMAN]] Required for rRNA maturation.<ref>PMID:19061985</ref> [[http://www.uniprot.org/uniprot/RS19_HUMAN RS19_HUMAN]] Required for pre-rRNA processing and maturation of 40S ribosomal subunits.<ref>PMID:16990592</ref> [[http://www.uniprot.org/uniprot/RSSA_HUMAN RSSA_HUMAN]] Required for the assembly and/or stability of the 40S ribosomal subunit. Required for the processing of the 20S rRNA-precursor to mature 18S rRNA in a late step of the maturation of 40S ribosomal subunits. Also functions as a cell surface receptor for laminin. Plays a role in cell adhesion to the basement membrane and in the consequent activation of signaling transduction pathways. May play a role in cell fate determination and tissue morphogenesis. Acts as a PPP1R16B-dependent substrate of PPP1CA. Also acts as a receptor for several other ligands, including the pathogenic prion protein, viruses, and bacteria.<ref>PMID:6300843</ref> <ref>PMID:16263087</ref> <ref>PMID:15516338</ref> [[http://www.uniprot.org/uniprot/RS6_HUMAN RS6_HUMAN]] May play an important role in controlling cell growth and proliferation through the selective translation of particular classes of mRNA. [[http://www.uniprot.org/uniprot/NOB1_HUMAN NOB1_HUMAN]] May play a role in mRNA degradation. [[http://www.uniprot.org/uniprot/RS3A_HUMAN RS3A_HUMAN]] May play a role during erythropoiesis through regulation of transcription factor DDIT3 (By similarity).[HAMAP-Rule:MF_03122] | [[http://www.uniprot.org/uniprot/TSR1_HUMAN TSR1_HUMAN]] Required during maturation of the 40S ribosomal subunit in the nucleolus. [[http://www.uniprot.org/uniprot/BYST_HUMAN BYST_HUMAN]] Required for processing of 20S pre-rRNA precursor and biogenesis of 40S ribosomal subunits. May be required for trophinin-dependent regulation of cell adhesion during implantation of human embryos.<ref>PMID:17360433</ref> <ref>PMID:17381424</ref> [[http://www.uniprot.org/uniprot/PNO1_HUMAN PNO1_HUMAN]] Positively regulates dimethylation of two adjacent adenosines in the loop of a conserved hairpin near the 3'-end of 18S rRNA (PubMed:25851604).<ref>PMID:25851604</ref> [[http://www.uniprot.org/uniprot/RS24_HUMAN RS24_HUMAN]] Required for processing of pre-rRNA and maturation of 40S ribosomal subunits.<ref>PMID:18230666</ref> [[http://www.uniprot.org/uniprot/RS18_HUMAN RS18_HUMAN]] Located at the top of the head of the 40S subunit, it contacts several helices of the 18S rRNA (By similarity).[HAMAP-Rule:MF_01315] [[http://www.uniprot.org/uniprot/RS7_HUMAN RS7_HUMAN]] Required for rRNA maturation.<ref>PMID:19061985</ref> [[http://www.uniprot.org/uniprot/RS19_HUMAN RS19_HUMAN]] Required for pre-rRNA processing and maturation of 40S ribosomal subunits.<ref>PMID:16990592</ref> [[http://www.uniprot.org/uniprot/RSSA_HUMAN RSSA_HUMAN]] Required for the assembly and/or stability of the 40S ribosomal subunit. Required for the processing of the 20S rRNA-precursor to mature 18S rRNA in a late step of the maturation of 40S ribosomal subunits. Also functions as a cell surface receptor for laminin. Plays a role in cell adhesion to the basement membrane and in the consequent activation of signaling transduction pathways. May play a role in cell fate determination and tissue morphogenesis. Acts as a PPP1R16B-dependent substrate of PPP1CA. Also acts as a receptor for several other ligands, including the pathogenic prion protein, viruses, and bacteria.<ref>PMID:6300843</ref> <ref>PMID:16263087</ref> <ref>PMID:15516338</ref> [[http://www.uniprot.org/uniprot/RS6_HUMAN RS6_HUMAN]] May play an important role in controlling cell growth and proliferation through the selective translation of particular classes of mRNA. [[http://www.uniprot.org/uniprot/NOB1_HUMAN NOB1_HUMAN]] May play a role in mRNA degradation. [[http://www.uniprot.org/uniprot/RS3A_HUMAN RS3A_HUMAN]] May play a role during erythropoiesis through regulation of transcription factor DDIT3 (By similarity).[HAMAP-Rule:MF_03122] | ||
+ | <div style="background-color:#fffaf0;"> | ||
+ | == Publication Abstract from PubMed == | ||
+ | The formation of eukaryotic ribosomal subunits extends from the nucleolus to the cytoplasm and entails hundreds of assembly factors. Despite differences in the pathways of ribosome formation, high-resolution structural information has been available only from fungi. Here we present cryo-electron microscopy structures of late-stage human 40S assembly intermediates, representing one state reconstituted in vitro and five native states that range from nuclear to late cytoplasmic. The earliest particles reveal the position of the biogenesis factor RRP12 and distinct immature rRNA conformations that accompany the formation of the 40S subunit head. Molecular models of the late-acting assembly factors TSR1, RIOK1, RIOK2, ENP1, LTV1, PNO1 and NOB1 provide mechanistic details that underlie their contribution to a sequential 40S subunit assembly. The NOB1 architecture displays an inactive nuclease conformation that requires rearrangement of the PNO1-bound 3' rRNA, thereby coordinating the final rRNA folding steps with site 3 cleavage. | ||
+ | |||
+ | Visualizing late states of human 40S ribosomal subunit maturation.,Ameismeier M, Cheng J, Berninghausen O, Beckmann R Nature. 2018 Jun 6. pii: 10.1038/s41586-018-0193-0. doi:, 10.1038/s41586-018-0193-0. PMID:29875412<ref>PMID:29875412</ref> | ||
+ | |||
+ | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | ||
+ | </div> | ||
+ | <div class="pdbe-citations 6g4s" style="background-color:#fffaf0;"></div> | ||
== References == | == References == | ||
<references/> | <references/> |
Revision as of 06:33, 20 June 2018
Cryo-EM structure of a late human pre-40S ribosomal subunit - State B
|