DNA Origami Assembly for the Tar Chemoreceptor
From Proteopedia
(Difference between revisions)
Line 5: | Line 5: | ||
== Introduction to Chemotaxis == | == Introduction to Chemotaxis == | ||
- | Chemotaxis is the process by which bacteria sense chemicals in their environment. This is done through the use of chemoreceptors to sense a chemical gradient that they can follow towards higher concentrations of food or away from higher concentrations of poisons or other unfavorable conditions. The Tar chemoreceptor is involved with the sensing of aspartate, a common amino acid, by binding aspartate in the extracellular portion of the protein and then propagates a signal down the receptor to activate a pathway to alter movement. | + | Chemotaxis is the process by which bacteria sense chemicals in their environment. This is done through the use of chemoreceptors to sense a chemical gradient that they can follow towards higher concentrations of food or away from higher concentrations of poisons or other unfavorable conditions. The Tar chemoreceptor is involved with the sensing of aspartate, a common amino acid, by binding aspartate in the extracellular portion of the protein and then propagates a signal down the receptor to activate a pathway to alter movement. [Add picture of chemoreceptor here? Are there any that are open source?] |
== Possible Applications of Chemotaxis == | == Possible Applications of Chemotaxis == | ||
+ | Understanding how signals are propagated in chemotaxis would be incredibly helpful in the fight against antibiotic resistance. Being able to control bacterial movement could allow a treatment to be engineered to move bacteria either towards antibiotics, therefore reducing the necessary dosage, or away from food or nutrients, effectively starving the bacteria. In addition, being able to use bacteria as carriers for drugs could also be a novel drug delivery technique. | ||
+ | == DNA Origami == | ||
- | |||
- | == Relevance == | ||
== Structural highlights == | == Structural highlights == |
Revision as of 03:09, 31 October 2018
Your Heading Here (maybe something like 'Structure')
|
References
- ↑ Hanson, R. M., Prilusky, J., Renjian, Z., Nakane, T. and Sussman, J. L. (2013), JSmol and the Next-Generation Web-Based Representation of 3D Molecular Structure as Applied to Proteopedia. Isr. J. Chem., 53:207-216. doi:http://dx.doi.org/10.1002/ijch.201300024
- ↑ Herraez A. Biomolecules in the computer: Jmol to the rescue. Biochem Mol Biol Educ. 2006 Jul;34(4):255-61. doi: 10.1002/bmb.2006.494034042644. PMID:21638687 doi:10.1002/bmb.2006.494034042644