Bacterial thiolase

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Current revision (12:24, 16 March 2019) (edit) (undo)
 
(27 intermediate revisions not shown.)
Line 64: Line 64:
|}
|}
-
[[Image:Table-2-for-proteopedia.PNG|700px]]
+
[[Image:Table-2-for-proteopedia-new2.PNG|left|thumb|600px]]
== The reaction mechanism ==
== The reaction mechanism ==
Line 141: Line 141:
structural enzymology<ref name="merilainen" /> has confirmed that the CNH-triad of
structural enzymology<ref name="merilainen" /> has confirmed that the CNH-triad of
''Zoogloea ramigera'' is indeed important for the function of oxyanion
''Zoogloea ramigera'' is indeed important for the function of oxyanion
-
hole 1. More recently a sequence alignment using 130 thiolase and thiolase-like sequences
+
hole 1. These fingerprint sequences are in loops close to the active site. The catalytic base, Cys378 in the ''Zoogloea ramigera'' thiolase is in a fourth catalytic loop, and in most thiolases this is part of a conserved CxG-motif, except in the SCP2-thiolase subfamily <ref>PMID:30573650</ref>. More recently a sequence alignment using 130 thiolase and thiolase-like sequences
-
(SLPs and TLPs) has been reported. Each of the observed sequence clusters (Figure 6) has
+
(SLPs and TLPs) has been reported<ref name="tuberculosis">PMID:24825023 </ref>. The phylogenetic tree calculations using this sequence alignment groups these sequences in several clusters, as shown in Figure 6. Each of the observed sequence clusters has
-
a unique combination of these four sequence fingerprints <ref>PMID:24825023 </ref>.
+
a unique combination of the four sequence fingerprints.
 +
 
 +
[[Image:Figure-3-tuberculosis.jpeg|left|thumb|600px | Figure 6. The clustering of thiolase sequences into 11 clusters, using 130 thiolase sequences <ref name="tuberculosis"/> (this figure is copyright protected https://www.journals.elsevier.com/tuberculosis ; permission for publication on this website has been obtained).]]
 +
 
</StructureSection>
</StructureSection>
==Additional Resources==
==Additional Resources==

Current revision

3D structure (1DM3) of the bacterial Zoogloea ramigera biosynthetic thiolase

Drag the structure with the mouse to rotate

Additional Resources

For additional information, see: Metabolic Disorders

3D structures of Thiolase

Thiolase


References

  1. Kiema TR, Thapa CJ, Laitaoja M, Schmitz W, Maksimainen MM, Fukao T, Rouvinen J, Janis J, Wierenga RK. The peroxisomal zebrafish SCP2-thiolase (type-1) is a weak transient dimer as revealed by crystal structures and native mass spectrometry. Biochem J. 2018 Dec 20. pii: BCJ20180788. doi: 10.1042/BCJ20180788. PMID:30573650 doi:http://dx.doi.org/10.1042/BCJ20180788
  2. Williams SF, Palmer MA, Peoples OP, Walsh CT, Sinskey AJ, Masamune S. Biosynthetic thiolase from Zoogloea ramigera. Mutagenesis of the putative active-site base Cys-378 to Ser-378 changes the partitioning of the acetyl S-enzyme intermediate. J Biol Chem. 1992 Aug 15;267(23):16041-3. PMID:1353760
  3. 3.0 3.1 Kursula P, Ojala J, Lambeir AM, Wierenga RK. The catalytic cycle of biosynthetic thiolase: a conformational journey of an acetyl group through four binding modes and two oxyanion holes. Biochemistry. 2002 Dec 31;41(52):15543-56. PMID:12501183
  4. 4.0 4.1 4.2 Merilainen G, Poikela VM, Kursula P, Wierenga RK. The thiolase reaction mechanism: the importance of Asn316 and His348 for stabilizing the enolate intermediate of the Claisen condensation. Biochemistry. 2009 Oct 20. PMID:19842716 doi:10.1021/bi901069h
  5. 5.0 5.1 Fukao T, Nguyen HT, Nguyen NT, Vu DC, Can NT, Pham AT, Nguyen KN, Kobayashi H, Hasegawa Y, Bui TP, Niezen-Koning KE, Wanders RJ, de Koning T, Nguyen LT, Yamaguchi S, Kondo N. A common mutation, R208X, identified in Vietnamese patients with mitochondrial acetoacetyl-CoA thiolase (T2) deficiency. Mol Genet Metab. 2010 May;100(1):37-41. Epub 2010 Jan 21. PMID:20156697 doi:10.1016/j.ymgme.2010.01.007
  6. Modis Y, Wierenga RK. Crystallographic analysis of the reaction pathway of Zoogloea ramigera biosynthetic thiolase. J Mol Biol. 2000 Apr 14;297(5):1171-82. PMID:10764581 doi:10.1006/jmbi.2000.3638
  7. Haapalainen AM, Merilainen G, Wierenga RK. The thiolase superfamily: condensing enzymes with diverse reaction specificities. Trends Biochem Sci. 2006 Jan;31(1):64-71. Epub 2005 Dec 13. PMID:16356722 doi:10.1016/j.tibs.2005.11.011
  8. Jiang C, Kim SY, Suh DY. Divergent evolution of the thiolase superfamily and chalcone synthase family. Mol Phylogenet Evol. 2008 Dec;49(3):691-701. Epub 2008 Sep 12. PMID:18824113 doi:10.1016/j.ympev.2008.09.002
  9. Kiema TR, Thapa CJ, Laitaoja M, Schmitz W, Maksimainen MM, Fukao T, Rouvinen J, Janis J, Wierenga RK. The peroxisomal zebrafish SCP2-thiolase (type-1) is a weak transient dimer as revealed by crystal structures and native mass spectrometry. Biochem J. 2018 Dec 20. pii: BCJ20180788. doi: 10.1042/BCJ20180788. PMID:30573650 doi:http://dx.doi.org/10.1042/BCJ20180788
  10. 10.0 10.1 Anbazhagan P, Harijan RK, Kiema TR, Janardan N, Murthy MR, Michels PA, Juffer AH, Wierenga RK. Phylogenetic relationships and classification of thiolases and thiolase-like proteins of Mycobacterium tuberculosis and Mycobacterium smegmatis. Tuberculosis (Edinb). 2014 Jul;94(4):405-12. doi: 10.1016/j.tube.2014.03.003., Epub 2014 Apr 4. PMID:24825023 doi:http://dx.doi.org/10.1016/j.tube.2014.03.003

Proteopedia Page Contributors and Editors (what is this?)

Rik Wierenga, Joel L. Sussman, Michal Harel, Satyan Sharma, David Canner

Personal tools