Gamma secretase

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 20: Line 20:
The events leading to the formation of a mature γ-secretase complex start from the formation of an initial scaffolding complex composed of APH-1 and NCT. Once the scaffold is created, the full-length PS can attach itself.<ref name= "mckeon" />The proximal C-terminus of the PS holoprotein binds to the APH-1-NCT subcomplex by interacting with the TM domain of NCT. Following PS binding, PEN-2 is incorporated into the complex by interacting with TM4 of PS. At the final step, the '''loop domain''' between TM6 and TM7 of PS is cleaved by endoproteolysis. Alternatively, the APH-1-NCT subcomplex may bind directly to a cognate PS1-PEN-2 structure to generate the mature γ-secretase complex.<ref name= "zhang" />The active complex is then shuttled to the Golgi where it is glycosylated. Only after the assembly of all <scene name='81/812869/Matilda_scene_7/1'>four subunits</scene> and the glycosylation will GS become active.<ref name= "carroll" />
The events leading to the formation of a mature γ-secretase complex start from the formation of an initial scaffolding complex composed of APH-1 and NCT. Once the scaffold is created, the full-length PS can attach itself.<ref name= "mckeon" />The proximal C-terminus of the PS holoprotein binds to the APH-1-NCT subcomplex by interacting with the TM domain of NCT. Following PS binding, PEN-2 is incorporated into the complex by interacting with TM4 of PS. At the final step, the '''loop domain''' between TM6 and TM7 of PS is cleaved by endoproteolysis. Alternatively, the APH-1-NCT subcomplex may bind directly to a cognate PS1-PEN-2 structure to generate the mature γ-secretase complex.<ref name= "zhang" />The active complex is then shuttled to the Golgi where it is glycosylated. Only after the assembly of all <scene name='81/812869/Matilda_scene_7/1'>four subunits</scene> and the glycosylation will GS become active.<ref name= "carroll" />
-
== Alzheimer's Disease ==
+
==Alzheimer's Pathway ==
<Structure load='6iyc' size='350' frame='true' align='left' caption='Amyloid-Beta Cleavage' scene='Insert optional scene name here' />
<Structure load='6iyc' size='350' frame='true' align='left' caption='Amyloid-Beta Cleavage' scene='Insert optional scene name here' />
 +
On the cell surface, amyloid precursor protein (APP) can be proteolyzed directly by α-secretase followed by γ-secretase, a process that does not generate Aβ, or APP can be reinternalized in clathrin-coated pits into another endosomal compartment containing the proteases BACE1 and γ-secretase resulting in the production of Aβ. FRET analysis indicates that γ-secretase activity is present on the cell surface, where it complements α-secretase activity, and in endosomal compartments, where it complements BACE1 activity.<ref name= "o'brien" /> The cleavage of various substrates appears to be dependent on the subcellular compartment; APP is mainly cleaved in the TGN and early endosomal domains thus, a disturbance in the localization of the γ-secretase complex may play some role in abnormal Aβ generation and AD pathogenesis.<ref name= "thompson" />
 +
The initial cleavage of APP by α- or β-secretase, results in membrane-bound C-terminal fragments of APP (APP αCTF and βCTF). αCTF and βCTF are further cleaved by γ-secretase to generate p83 or Aβ, respectively. The p83 fragment is rapidly degraded and widely believed to have a negligible function, whereas <scene name='81/812869/Matilda_scene_8/1'>Aβ</scene> is neurotoxic.<ref name= "zhang" /> γ-secretase-mediated cleavage is unique in that the cleavage takes place within the transmembrane domain, though the exact site can vary. γ-cleavage can yield both Aβ40, the majority species, and Aβ42, the more amyloidogenic species, as well as release the intracellular domain of APP (AICD). Recent data has shown that PS/γ-secretase also mediates ζ-site cleavage (Aβ46) and ε-site cleavage (Aβ49)<ref name= "thompson" />; the existence of different Aβ species, including the shorter Aβ38 fragments suggests that γ-secretase cleaves APP in a sequential manner, first at the ε-site, followed by the ζ-site, and the γ-site.2 Upon Aβ formation, Aβ is then dumped into the extracellular space following vesicle recycling or degraded in lysosomes.<ref name= "o'brien" />
 +
 +
== Alzheimer's Disease ==
-
Although the majority of <scene name='81/812869/Matilda_scene_8/1'></scene> is secreted out of the cell, Aβ can be generated in several subcellular compartments within the cell, such as the ER, Golgi/TGN, and endosome/lysosome. In addition, extracellular Aβ can be internalized by the cell for degradation. The intracellular existence of Aβ implies that Aβ may accumulate within neurons and contribute to disease pathogenesis. Confirming this, intraneuronal Aβ immunoreactivity has been found in the hippocampal and entorhinal cortical regions which are prone to early AD pathology in patients with mild cognitive impairment. In Down Syndrome (DS) patients, the accumulation of intracellular Aβ precedes extracellular plaque formation and the level of intraneuronal Aβ decreases as the extracellular Aβ plaques accumulate. Intraneuronal Aβ can also impair amygdala-dependent emotional responses by affecting the ERK/MAPK signaling pathway. Inhibition of dynamin-mediated but not clathrin-mediated Aβ internalization was also found to reduce Aβ-induced neurotoxicity. One recent study suggests that internalized Aβ can aggregate within the cell and disrupt the vesicular membrane, thus contributing to its pathological effect. There are two main toxic species, Aβ40 and Aβ42, with Aβ42 more hydrophobic and more prone to fibril formation while only making up about 10% of the Aβ peptide produced. Studies done on familial AD (FAD) mutations consistently show increases in the ratio of Aβ42/40, suggesting that elevated levels of Aβ42 relative to Aβ40 is critical for AD pathogenesis, probably by providing the core for Aβ assembly into oligomers, fibrils, and amyloidogenic plaques.<ref name="thompson" /> In addition to generating Aβ, γ-secretase cleavage of APP also generates an APP intracellular domain (AICD) within the cell. AICD has been found to possess transcriptional transactivation activity and can regulate the transcription of multiple genes including APP, GSK-3b, KAI1, neprilysin, BACE1, p53, EGFR, and LRP1. In addition, free AICD can induce apoptosis and may play a role in sensitizing neurons to toxic stimuli. <ref name= "zhang" /> However, as the intracellular domain of APP, one important function of AICD is to facilitate the interaction of APP with various cytosolic factors that regulate APP's intracellular trafficking and/or signal transduction function. Interestingly, it seems that AICD-mediated APP interaction with different factors is controlled by the phosphorylation state of AICD.<ref name="thompson" />
+
Although the majority of Aβ is secreted out of the cell, Aβ can be generated in several subcellular compartments within the cell, such as the ER, Golgi/TGN, and endosome/lysosome. In addition, extracellular Aβ can be internalized by the cell for degradation. The intracellular existence of Aβ implies that Aβ may accumulate within neurons and contribute to disease pathogenesis. Confirming this, intraneuronal Aβ immunoreactivity has been found in the hippocampal and entorhinal cortical regions which are prone to early AD pathology in patients with mild cognitive impairment. In Down Syndrome (DS) patients, the accumulation of intracellular Aβ precedes extracellular plaque formation and the level of intraneuronal Aβ decreases as the extracellular Aβ plaques accumulate. Intraneuronal Aβ can also impair amygdala-dependent emotional responses by affecting the ERK/MAPK signaling pathway. Inhibition of dynamin-mediated but not clathrin-mediated Aβ internalization was also found to reduce Aβ-induced neurotoxicity. One recent study suggests that internalized Aβ can aggregate within the cell and disrupt the vesicular membrane, thus contributing to its pathological effect. There are two main toxic species, Aβ40 and Aβ42, with Aβ42 more hydrophobic and more prone to fibril formation while only making up about 10% of the Aβ peptide produced. Studies done on familial AD (FAD) mutations consistently show increases in the ratio of Aβ42/40, suggesting that elevated levels of Aβ42 relative to Aβ40 is critical for AD pathogenesis, probably by providing the core for Aβ assembly into oligomers, fibrils, and amyloidogenic plaques.<ref name="thompson" /> In addition to generating Aβ, γ-secretase cleavage of APP also generates an APP intracellular domain (AICD) within the cell. AICD has been found to possess transcriptional transactivation activity and can regulate the transcription of multiple genes including APP, GSK-3b, KAI1, neprilysin, BACE1, p53, EGFR, and LRP1. In addition, free AICD can induce apoptosis and may play a role in sensitizing neurons to toxic stimuli. <ref name= "zhang" /> However, as the intracellular domain of APP, one important function of AICD is to facilitate the interaction of APP with various cytosolic factors that regulate APP's intracellular trafficking and/or signal transduction function. Interestingly, it seems that AICD-mediated APP interaction with different factors is controlled by the phosphorylation state of AICD.<ref name="thompson" />
== Relevance ==
== Relevance ==

Revision as of 05:42, 15 April 2019

Gamma Secretase Interaction In Alzheimer's Disease

is a multi-subunit protease complex which cleaves many transmembrane proteins; it is known as an intramembrane protease. γ-secretase is highly studied in its cleavage of amyloid precursor protein (APP) releasing beta-amyloid (Aβ peptides) which further oligomerize to form neurofibrillary tangles and plaques in Alzheimer’s disease.[1]

Gamma Secretase Complex

Drag the structure with the mouse to rotate

References

  1. 1.0 1.1 doi: https://dx.doi.org/10.1016/B978-012351830-9/50024-X
  2. Hanson, R. M., Prilusky, J., Renjian, Z., Nakane, T. and Sussman, J. L. (2013), JSmol and the Next-Generation Web-Based Representation of 3D Molecular Structure as Applied to Proteopedia. Isr. J. Chem., 53:207-216. doi:http://dx.doi.org/10.1002/ijch.201300024
  3. Herraez A. Biomolecules in the computer: Jmol to the rescue. Biochem Mol Biol Educ. 2006 Jul;34(4):255-61. doi: 10.1002/bmb.2006.494034042644. PMID:21638687 doi:10.1002/bmb.2006.494034042644
  4. 4.0 4.1 4.2 4.3 4.4 4.5 4.6 Zhang X, Li Y, Xu H, Zhang YW. The gamma-secretase complex: from structure to function. Front Cell Neurosci. 2014 Dec 11;8:427. doi: 10.3389/fncel.2014.00427., eCollection 2014. PMID:25565961 doi:http://dx.doi.org/10.3389/fncel.2014.00427
  5. 5.0 5.1 5.2 5.3 5.4 Carroll CM, Li YM. Physiological and pathological roles of the gamma-secretase complex. Brain Res Bull. 2016 Sep;126(Pt 2):199-206. doi:, 10.1016/j.brainresbull.2016.04.019. Epub 2016 Apr 28. PMID:27133790 doi:http://dx.doi.org/10.1016/j.brainresbull.2016.04.019
  6. 6.0 6.1 6.2 6.3 6.4 6.5 Zhang YW, Thompson R, Zhang H, Xu H. APP processing in Alzheimer's disease. Mol Brain. 2011 Jan 7;4:3. doi: 10.1186/1756-6606-4-3. PMID:21214928 doi:http://dx.doi.org/10.1186/1756-6606-4-3
  7. 7.0 7.1 7.2 7.3 7.4 7.5 O'Brien RJ, Wong PC. Amyloid precursor protein processing and Alzheimer's disease. Annu Rev Neurosci. 2011;34:185-204. doi: 10.1146/annurev-neuro-061010-113613. PMID:21456963 doi:http://dx.doi.org/10.1146/annurev-neuro-061010-113613
  8. Kelleher RJ 3rd, Shen J. Presenilin-1 mutations and Alzheimer's disease. Proc Natl Acad Sci U S A. 2017 Jan 24;114(4):629-631. doi:, 10.1073/pnas.1619574114. Epub 2017 Jan 12. PMID:28082723 doi:http://dx.doi.org/10.1073/pnas.1619574114
Personal tools