User:Nikhil Malvankar/Geobacter pilus structure and function
From Proteopedia
(Difference between revisions)
Line 31: | Line 31: | ||
<StructureSection size='[250,500]' side='right' caption='' scene='83/834714/Filament/1'> | <StructureSection size='[250,500]' side='right' caption='' scene='83/834714/Filament/1'> | ||
Previously, pili of ''Geobacter sulfurreducens'' were thought to be composed of PilA-N, a 61-amino acid protein<ref>PMID: 25736881 </ref><ref>PMID: 31608018 </ref>. | Previously, pili of ''Geobacter sulfurreducens'' were thought to be composed of PilA-N, a 61-amino acid protein<ref>PMID: 25736881 </ref><ref>PMID: 31608018 </ref>. | ||
- | Our electron cryomicroscopic structure of ''Geobacter sulfurreducens'' pili reveals them to be composed of a core of '''<font color='#e87000'>PilA-N</font>''' coated with an outer surface layer of '''<font color='00a0a0'>PilA-C</font>''' (<scene name='83/834714/Filament/1'>restore initial scene)</scene>. Here is a <scene name='83/834714/Filament/2'>cutaway view</scene> (front half hidden). The C-termini of '''<font color='#e87000'>PilA-N</font>''' <scene name='83/834714/Filament/3'>protrude into sockets</scene> in '''<font color='00a0a0'>PilA-C</font>'''. | + | Our electron cryomicroscopic structure of ''Geobacter sulfurreducens'' pili reveals them to be composed of a core of '''<font color='#e87000'>PilA-N</font>''' coated with an outer surface layer of '''<font color='00a0a0'>PilA-C</font>''' (104 amino acids; <scene name='83/834714/Filament/1'>restore initial scene)</scene>. Here is a <scene name='83/834714/Filament/2'>cutaway view</scene> (front half hidden). The C-termini of '''<font color='#e87000'>PilA-N</font>''' <scene name='83/834714/Filament/3'>protrude into sockets</scene> in '''<font color='00a0a0'>PilA-C</font>'''. |
- | The filament is assembled from <scene name='83/834714/Dimer/3'>heterodimers</scene>. Dimer <scene name='83/834714/Dimer/2'>secondary structure</scene>: '''<font color='#e87000'>PilA-N</font>''' consists of two alpha helices, while '''<font color='00a0a0'>PilA-C</font>''' includes a 3-stranded beta sheet. The C-terminal protrusion of '''<font color='#e87000'>PilA-N</font>''' is held between two flaps of '''<font color='00a0a0'>PilA-C</font>'''. These flaps might be open before '''<font color='#e87000'>PilA-N</font>''' arrives to form a dimer, reminiscent of the flaps of HIV protease<ref>PMID: 16418268</ref>. | + | The filament is assembled from <scene name='83/834714/Dimer/3'>heterodimers</scene>. Dimer <scene name='83/834714/Dimer/2'>secondary structure</scene>: '''<font color='#e87000'>PilA-N</font>''' consists of two alpha helices, while '''<font color='00a0a0'>PilA-C</font>''' includes a 3-stranded beta sheet. The C-terminal protrusion of '''<font color='#e87000'>PilA-N</font>''' is <scene name='83/834714/Flaps/1'>held between two flaps</scene> of '''<font color='00a0a0'>PilA-C</font>'''. These flaps might be open before '''<font color='#e87000'>PilA-N</font>''' arrives to form a dimer, reminiscent of the flaps of HIV protease<ref>PMID: 16418268</ref>. |
Revision as of 01:01, 9 February 2020
Interactive 3D Complement in Proteopedia
Structure of novel pili evolved for extracellular translocation of microbial nanowires
Yangqi Gu,
Vishok Srikanth,
Ruchi Jain,
Aldo I. Salazar-Morales,
J. Patrick O'Brien,
Sophia M. Yi,
Rajesh K. Soni,
Fadel A. Samatey,
Sibel Ebru Yalcin,
and Nikhil S. Malvankar.
(journal article link here) (2020).
(DOI link here)
Contents |
Molecular Tour
|
Download
Animations for Powerpoint
Click images to see them full size, or to download them.
- (to be added)
See Also
- (to be added)
Notes & References
- ↑ Malvankar NS, Vargas M, Nevin K, Tremblay PL, Evans-Lutterodt K, Nykypanchuk D, Martz E, Tuominen MT, Lovley DR. Structural basis for metallic-like conductivity in microbial nanowires. MBio. 2015 Mar 3;6(2):e00084. doi: 10.1128/mBio.00084-15. PMID:25736881 doi:http://dx.doi.org/10.1128/mBio.00084-15
- ↑ Lovley DR, Walker DJF. Geobacter Protein Nanowires. Front Microbiol. 2019 Sep 24;10:2078. doi: 10.3389/fmicb.2019.02078. eCollection , 2019. PMID:31608018 doi:http://dx.doi.org/10.3389/fmicb.2019.02078
- ↑ Hornak V, Okur A, Rizzo RC, Simmerling C. HIV-1 protease flaps spontaneously open and reclose in molecular dynamics simulations. Proc Natl Acad Sci U S A. 2006 Jan 24;103(4):915-20. doi:, 10.1073/pnas.0508452103. Epub 2006 Jan 17. PMID:16418268 doi:http://dx.doi.org/10.1073/pnas.0508452103