User:Isabela Fonseca de Oliveira Granha/Sandbox 1

From Proteopedia

< User:Isabela Fonseca de Oliveira Granha(Difference between revisions)
Jump to: navigation, search
Current revision (15:13, 11 August 2020) (edit) (undo)
 
(43 intermediate revisions not shown.)
Line 1: Line 1:
-
=ß-catenin=
+
=Crystal Structure of a Full-Length Zebrafish Beta-Catenin=
-
ß-catenin is an important element in cell adherens junctions connecting cytoplasmic proteins. Besides that, it is an essential regulator of the canonical Wnt pathway ([https://en.wikipedia.org/wiki/Wnt_signaling_pathway]) (related to embryonic development). Disturbance of this activity is associated with cancer and other diseases. Therefore, ß-catenin is an important target for developing medication for many diseases, with considerable interest in its structure. <ref name="xing2009">DOI 10.1016/j.str.2007.12.021</ref>
+
ß-catenin is an important element in cell-cell adherens junctions, called cadherins. Reported in all Eukaryota ([https://en.wikipedia.org/wiki/Eukaryote Eukaryota]) phylum, in humans the gene CTNNB1 ([https://www.ncbi.nlm.nih.gov/gene/1499 CTNNB1]) transcribes a 95kDa protein that allows cadherins to anchor in cytoeskeleton (actin filaments) by connecting cytoplasmic proteins. Besides that, it is an essential regulator of the canonical Wnt pathway <ref name=logan&nusse2004> DOI : 10.1146/annurev.cellbio.20.010403.113126</ref> (related to embryonic development). Disturbance of this activity is associated with cancer and other diseases. Therefore, ß-catenin is an important target for developing medication for many diseases, with considerable interest in its structure. <ref name="xing2009">DOI 10.1016/j.str.2007.12.021</ref>
<StructureSection load='2Z6G' size='400' caption='Structure of ß-catenin from Zebrafish' scene='84/848919/Dotsbetacateninacoloridaartigo/1'>
<StructureSection load='2Z6G' size='400' caption='Structure of ß-catenin from Zebrafish' scene='84/848919/Dotsbetacateninacoloridaartigo/1'>
==Structure==
==Structure==
 +
The zebrafish ([https://pt.wikipedia.org/wiki/Danio_rerio ''Danio rerio'']) <scene name='84/848919/Betacateninacoloridaartigo/2'>ß-catenin</scene> ([http://www.rcsb.org/structure/2Z6G 2Z6G]) contains residues 126-681 and a central core of <scene name='84/848919/Armrepeatsdomain/1'>12 armadillo repeats domain</scene> and an alpha helix, the <scene name='84/848919/C-helix3correta/1'>helix-C</scene>, at the ß-catenin C-terminal domain.
-
The zebrafish ([''Danio rerio]'') <scene name='84/848919/Betacateninacoloridaartigo/2'>ß-catenin</scene> ([http://www.rcsb.org/structure/2Z6G 2Z6G]) contains residues 126-681 and a central core of <scene name='84/848919/Armrepeatsdomain/1'>12 armadillo repeats domain</scene> and an alpha helix, the <scene name='84/848919/C-helix3correta/1'>helix-C</scene>, at the beginning of the ß-catenin C-terminal domain. The armadillo domain is made of three helices in each repeat and has a particular site which is positively charged, constituting the <scene name='84/848919/Armbidingsurface/1'>binding surface</scene> for the majority of ß-catenin ligands. <ref name="xing2009" />
+
The terminal domains sequences mediate some of the protein interactions and are negatively charged (Figure 1). It is observed that the helix-C constitutes the C-terminal domain. The N terminus of the first armadillo repeat has an <scene name='84/848919/Correton-terminushelix/1'>extra alpha helix</scene>. Both N- and C-terminal domains do not interact specifically with the armadillo repeat domain. <ref name="xing2009" />
-
The terminal domains sequences are less conserved than the armadillo repeat domain, mediate some of the protein interactions and are both negatively charged. It is observed that the <scene name='84/848919/C-helix3correta/1'>helix-C constitutes the C-terminal domain</scene>, and the N terminus of the first armadillo repeat has an <scene name='84/848919/Correton-terminushelix/1'>extra alpha helix</scene>. Both N- and C-terminal domains do not interact with the armadillo repeat domain. <ref name="xing2009" />
+
The armadillo domain is more conserved than the terminal domains. It is made of 12 armadillo repeats each one with <scene name='84/848919/Centerarm5_helices/1'>three alpha helices connected by loops</scene> (as shown in ARM repeat 5), except for the <scene name='84/848919/Centerarm_repeat_7/1'>ARM repeat 7, which has two helices</scene>. Furthermore, it has a particular site which is positively charged (Figure 1), constituting the binding surface for the majority of ß-catenin ligands. Because the armadillo domain is positively while the terminal tails are negatively charged (Figure 1), their interactions are nonspecific. It is proposed that both tails act like chaperones - they might avoid nonspecific protein interactions of the ARM repeat domain and its self-aggregation.<ref name="xing2009" />
-
In contrast to the armadillo ligand-binding structural groove, the C-terminal tail is highly negatively charged. The helix-C caps the {{Template:ColorKey_Hydrophobic}} <scene name='84/848919/Hydrophilichelixc/1'>surface formed by the C-terminal end of the last armadillo repeats.</scene>. However, the other side of the surface, exposed to solvent, is composed of {{Template:ColorKey_Polar}} residues. Thereby, this structure forms part of the superhelical structure core of ß-catenin together with armadillo repeat domain. <ref name="xing2009" />
+
In contrast to the armadillo ligand-binding structural groove, the C-terminal tail is highly negatively charged (Figure 1). The C-helix caps the {{Template:ColorKey_Hydrophobic}} <scene name='84/848919/Centerhydrophilichelixc/1'>surface formed by the C-terminal end of the last armadillo repeats</scene>. However, the other side of the surface, exposed to solvent, is composed of {{Template:ColorKey_Polar}} residues (Figure 2). Thereby, this structure forms part of the superhelical structure core of ß-catenin together with armadillo repeat domain. It is possible that the C-helix is important for the transactivation of Wnt-responsive genes, but not for the cell adhesion through [[Cadherin|cadherins]]. Hence, this same β-catenin region is also the binding site of transcriptional inhibitors that compete directly with TCF for β-catenin binding.<ref name="xing2009" />
-
It is possible that the helix-C is important for the transactivation of Wnt-responsive genes, but not for the cell adhesion through [[Cadherin|cadherins]]. Hence, this same β-catenin region is also the binding site of transcriptional inhibitors that compete directly with TCF for β-catenin binding.<ref name="xing2009" />
+
-
==Cell Adhesion==
+
[[Image: Betacatenin eletrostatics white.png]]
 +
'''Figure 1''': Beta-catenin eletrostatic surface. The color blue indicates positively charged sites, and red, negative. The armadillo repeat domain has various positive sites and a particular one is an important binding area. The terminal tails are predominantly represented in red - and the C-helix is highly negatively charged.
-
In the absence of Wnt stimulus, the ß-catenin is located at the cytoplasmic side of the membrane as a component of cadherin-based cell-cell connections (Figure 1). [[Cadherin|Cadherins]] are transmembrane glycoproteins calcium-dependent adhesion that can link to ß-catenin through their cytoplasmic tails. The cadherin-catenin complex forms adherens junctions that polarize epithelial tissues and hold the cells together. <ref>Developmental Biology . Eleventh Edition. By Scott F. Gilbert and Michael J. F. Barresi. Sunderland (Massachusetts): Sinauer Associates. ISBN: 978-1-60535-470-5. 2016. </ref>
+
[[Image: Whitebetacatenincartoonhidrophocity.png]]
 +
'''Figure 2''': The beta-catenin polarity surface. The red color represents hidrophobic sites, and white, the hidrophilic areas. The protein does not have a partiular polar or apolar area. Polarity is well distributed through the molecule as well as the protein ligands.
-
The most known interaction occurs between <scene name='84/848919/Correctbeta-catenin_e-cadherin/2'>ß-catenin (green) and E-cadherin (pink)</scene> ([http://www.rcsb.org/structure/1I7X 1I7X]) (epithelial cadherin). They are associated while still in the endoplasmic reticulum and interfering with the binding of these proteins results in proteasomal degradation of the [[cadherin]]. First, alpha-catenin binds to ß-catenin at the first ARM repeat, amino acids <scene name='84/848919/Corretoam118-149/1'>118-149</scene>, resulting in an alpha-catenin/ß-catenin heterodimer. This binding stabilizes ß-catenin in the hinged form, and E-cadherin can connect simultaneously. The <scene name='84/848919/Surfacebeta-catenin_e-cadherin/1'>interaction surface</scene> is extensive, covering the entire length of the ß-catenin ARM repeat domain and involving the C-terminal 100 residues of the cadherin cytoplasmic domain. <ref name="valenta2012">DOI 10.1038/emboj.2012.150</ref> <ref name="huber2001">Huber, A. H., & Weis, W. I. (2001). The structure of the β-catenin/E-cadherin complex and the molecular basis of diverse ligand recognition by β-catenin. Cell, 105(3), 391-402.</ref>
+
Finally, the ''Danio rerio'' ([http://www.rcsb.org/structure/2Z6G 2Z6G] full length structure, blue), ''Mus musculus'' ([https://www.rcsb.org/structure/2BCT 2BCT] armadillo repeat region, green) and ''Homo sapiens'' ([https://www.rcsb.org/structure/2Z6H 2Z6H] full length structure, pink) beta-catenin alignment (Figure 3) shows that the protein structure is quite similar in these organisms. The three structures have 12 armadillo repeat group and the superposition indicates that the helix C in zebrafish and human beta-catenin conformation and orientation are essentially the same in both crystal structures. This great similarity between these proteins demonstrates that beta-catenin is evolutionary conserved and so are the pathways that it takes part.
 +
 
 +
[[Image:II2z6g 2bct 2z6h white.png]]
 +
'''Figure 3''': Superposition of a full length zebrafish (shown in blue), full length human (pink) and armadillo repeat region mouse (green) beta-catenin.
 +
 
 +
==Cell Adhesion==
 +
In the absence of Wnt stimulus, ß-catenin is located at the cytoplasmic side of the membrane as a component of cadherin-based cell-cell connections (Figure 4). [[Cadherin|Cadherins]] are transmembrane glycoproteins calcium-dependent that mediate cell-cell adhesion through link specially to ß-catenin by their cytoplasmic tails. The cadherin-catenin complex forms adherens junctions that polarize epithelial tissues and hold the cells together. However, in case of some tumor metastasis, that complex is reported as disrupted: in order to become more migratory, epithelial cells must loose their characteristic polarity, thus the complex might be affected (phenomenon described as 'cadherin switching' in epithelial-to-mesenchymal transition, EMT).<ref>Developmental Biology . Eleventh Edition. By Scott F. Gilbert and Michael J. F. Barresi. Sunderland (Massachusetts): Sinauer Associates. ISBN: 978-1-60535-470-5. 2016. </ref>
 +
 
 +
The most known interaction occurs between <scene name='84/848919/Beta-catenin_e-cadherin/3'> ß-catenin and E-cadherin</scene>, epithelial cadherin (the ß-catenin residues 134–671 are represented in green and the residues 577–728 of the mature E-cadherin sequence are colored in rose. The proteins are from ''Mus musculus'') ([https://www.rcsb.org/structure/1i7x 1I7X]). They are associated while still in the endoplasmic reticulum and interfering with the binding of these proteins results in proteasomal degradation of the cadherin. First, alpha-catenin binds to ß-catenin at the first ARM repeat, amino acids <scene name='84/848919/Corretoam118-149/1'>118-149</scene>, resulting in an alpha-catenin/ß-catenin heterodimer. This binding stabilizes ß-catenin in the hinged form, and E-cadherin can connect simultaneously. The <scene name='84/848919/Surfacebeta-catenin_e-cadherin/2'>interaction surface is extensive</scene>, covering the entire length of the ß-catenin ARM repeat domain and involving the C-terminal 100 residues of the cadherin cytoplasmic domain. <ref name="valenta2012">DOI 10.1038/emboj.2012.150</ref> <ref name="huber2001">Huber, A. H., & Weis, W. I. (2001). The structure of the β-catenin/E-cadherin complex and the molecular basis of diverse ligand recognition by β-catenin. Cell, 105(3), 391-402.</ref>
[[Image:Beta-catenin-moonlighting.png]]
[[Image:Beta-catenin-moonlighting.png]]
-
'''Figure 1''': Adapted image of cadherin-based cell adhesion. Alpha-catenin/ß-catenin forms a heterodimer that can connects to E-cadherin promoting the adherens junctions. As a homodimer, alpha-catenin interacts with actin.
+
'''Figure 4''': Cadherin-based cell adhesion. Alpha-catenin/ß-catenin forms a heterodimer that can connects to E-cadherin promoting the adherens junctions. As a homodimer, alpha-catenin interacts with actin. Adapted from: Bubus12/CC BY [https://commons.wikimedia.org/wiki/File:Beta-catenin-moonlighting.png]
==The ß-catenin destruction complex==
==The ß-catenin destruction complex==
-
In baseline conditions without Wnt signaling, ß-catenin concentrations are low in both the cytoplasm and the nucleus. Then, the destruction complex (Figure 2), formed by APC, [[Axin]], CK1ɑ and [[Glycogen synthase kinase 3|GSK]], is active and causes the degradation of the protein through proteasome. Initially it is recognized by APC and [[Axin]] that promote the phosphorylation of Ser45 by CK1ɑ. This facilitates the phosphorylation by [[Cyclin-dependent kinase|GSK]] in the residues of the amino acids Thr41, Ser37 and Ser33. The last two, when phosphorylated, leads to recognition by ß-TrCP and consequently ubiquitination by an [[Ubiquitin protein ligase|E3 ligase]] and degradation by [[Proteasome|26S proteasome]]. <ref name="valenta2012" />
+
In baseline conditions without Wnt signaling, ß-catenin concentrations are low in both the cytoplasm and the nucleus. Then, the destruction complex (Figure 5), formed by APC, [[Axin]], CK1ɑ and [[Glycogen synthase kinase 3|GSK]], is active and causes the degradation of the protein through proteasome. Initially it is recognized by APC and [[Axin]] that promote the phosphorylation of Ser45 by CK1ɑ. This facilitates the phosphorylation by [[Cyclin-dependent kinase|GSK]] in the residues of the amino acids Thr41, Ser37 and Ser33. The last two, when phosphorylated, leads to recognition by ß-TrCP and consequently ubiquitination by an [[Ubiquitin protein ligase|E3 ligase]] and degradation by [[Proteasome|26S proteasome]]. <ref name="valenta2012" /> Furthermore, the relation Wnt/ß-catenin pathway usually are reported by 'canonical' and 'non-canonical', whose meaning remotes to the components of the cascate. The first leads to accumulation and stabilization of cytosolic (unphosphorylated) ß-catenin and the second promotes the increase in intracellular calcium or mediate cell polarity, but both are established in embryonic development of normal tissue and organs. <ref name=Arend ''et al''2013> Arend ''et al,''2013. The Wnt/β-catenin pathway in ovarian cancer: A review. Gynecologic Oncology. Volume 131, Issue 3, December 2013, Pages 772-779.</ref> <ref name=Takayama ''et al''1996>Takayama ''et al,'' 1996. ß-Catenin Expression in Human Cancers. American journal of Pathology, Vol. 148, No. 1, January. </ref>
[[Image:Axindestructioncomplex.png]]
[[Image:Axindestructioncomplex.png]]
-
'''Figure 2''': A simplified diagram of the ß-catenin destruction complex. The destruction complex proteins promote the ß-catenin proteolysis in cytoplasm.
+
'''Figure 5''': A simplified diagram of the ß-catenin destruction complex. The destruction complex proteins promote the ß-catenin proteolysis in cytoplasm. Source: JWSchmidt at the English language Wikipedia/CC BY-SA [https://commons.wikimedia.org/wiki/File:Axindestructioncomplex.png]
-
+
-
==DNA binding and transcription==
+
-
The inhibition of ß-catenin destruction complex through activation of the Wnt pathway (Figure 3) leads to increased levels of the protein in cytoplasm and its translocation into the nucleus. ß-catenin interacts with different nuclear pore complex components and ARM repeats <scene name='84/848919/R10-12/1'>R10-R12</scene> are critical for its import and export. [[Forkhead box protein|FoxM1]] also facilitates its nuclear translocation directly interacting with ARM repeats <scene name='84/848919/R11-12/2'>R11-R12</scene>. [[Forkhead box protein|FoxM1]] forms a complex with ß-catenin/TCF on the promoters of Wnt target genes. Once in the nucleus, ß-catenin and its DNA binding partners can activate transcription of Wnt/ß-catenin target genes. Therefore, ß-catenin can only initiates transcription in a multimeric complex, as its central transcriptional activator. <ref name="valenta2012" />
+
==DNA binding and transcription==
 +
The inhibition of ß-catenin destruction complex through activation of the Wnt pathway (Figure 6) leads to increased levels of the protein in cytoplasm and its translocation into the nucleus. ß-catenin interacts with different nuclear pore complex components and ARM repeats <scene name='84/848919/R10-12/1'>R10-R12</scene> are critical for its import and export. [[Forkhead box protein|FoxM1]] also facilitates its nuclear translocation directly interacting with ARM repeats <scene name='84/848919/R11-12/2'>R11-R12</scene>. [[Forkhead box protein|FoxM1]] forms a complex with ß-catenin/TCF on the promoters of Wnt target genes. Once in the nucleus, ß-catenin and its DNA binding partners can activate transcription of Wnt/ß-catenin target genes. Therefore, ß-catenin can only initiates transcription in a multimeric complex, as its central transcriptional activator. <ref name="valenta2012" />
-
TCF transcription factors works as the principal nuclear member of ß-catenin multimeric complex. TCFs bind to DNA enhancers and ß-catenin acts as a link in a chain between them and others transcriptional coactivators. This interaction can be modulated to enhance, repress os switch off ß-catenin-mediated transcription. The majority of these transcription coactivators binds to <scene name='84/848919/R12andhelix-c/1'>the last ARM repeat and interacts with Helix-C</scene> and many of them can affect chromatin structure. Indeed, it seems that the C-terminus region of ß-catenin coordinates the recruitment and sequential exchange of these proteins. Binding of ß-catenin to TCF is blocked by some proteins such as <scene name='84/848919/Icat_bcat/3'>ICAT (orange), which interacts with the central ARM repeat of ß-catenin (green).</scene> ([http://www.rcsb.org/structure/1M1E 1M1E]) <ref name="valenta2012" />
+
TCF transcription factors works as the principal nuclear member of ß-catenin multimeric complex. TCFs bind to DNA enhancers and ß-catenin acts as a link in a chain between them and others transcriptional coactivators. This interaction can be modulated to enhance, repress os switch off ß-catenin-mediated transcription. The majority of these transcription coactivators binds to <scene name='84/848919/R12andhelix-c/1'>the last ARM repeat and interacts with Helix-C</scene> and many of them can affect chromatin structure. Indeed, it seems that the C-terminus region of ß-catenin coordinates the recruitment and sequential exchange of these proteins. Binding of ß-catenin to TCF is blocked by some proteins such as <scene name='84/848919/Icat_bcat/3'>ICAT</scene> (here ICAT is represented in orange and is a full length structure from ''Homo sapiens''; ß-catenin is shown in green and is from ''Mus musculus''). ([http://www.rcsb.org/structure/1M1E 1M1E]) <ref name="valenta2012" />
 +
This interaction can be divided in two regions: the <scene name='84/848919/Extendedregionicat_bcat_5_10/2'>ICAT extended C-terminal region bind to the ß-catenin ARM 5-10 </scene> and the <scene name='84/848919/Helicalicatdomain_bcat11_12/4'>ICAT helical N-terminal domain interacts with the ARM repeat 11 and 12</scene>. The first one overlaps with others ß-catenin ligands and is known for its several <scene name='84/848919/Hydrophobic_icat_bcat/1'>hydrophobic interactions</scene> (for example, Val68, Met69, and Phe71 interact with hydrophobic sites on the surface of ß-catenin) and <scene name='84/848919/2saltbridge_icat_bcat/2'>two salt bridges</scene> - Asp66 and Glu75 form salt bridges with ß-catenin residues Lys435 (repeat 8) and Lys312 (repeat 5). There are other polar contacts to stabilize the protein-protein binding. Finally, the interaction between the ICAT helical domain and the two last ARM repeat is water-mediated contact (with ARM 11) and hydrophobic interactions (ARM 12). The hydrophobic interactions are stabilized by the connections between <scene name='84/848919/Hydrophbic_lys19_icat_bcat/3'>the aliphatic portion of the Lys19 side chain and the aromatic rings of Phe660 (ARM 12) and Phe40 (ICAT)</scene> (shown in pink). Lys19 also forms a <scene name='84/848919/Salt_bridge_lys19_icat_bcat/2'>salt bridge</scene> with ß-catenin Glu664 (repeat 12). Another polar interaction occurs between <scene name='84/848919/Arg_glu_icat_bcat/2'>ICAT Glu37 and ß-catenin Arg66</scene>1. <ref name=Daniels & Weis 2002> Daniels, D. L., & Weis, W. I. (2002). ICAT inhibits beta-catenin binding to Tcf/Lef-family transcription factors and the general coactivator p300 using independent structural modules. Molecular cell, 10(3), 573–584. https://doi.org/10.1016/s1097-2765(02)00631-7. </ref>
[[Image:Canonical Wnt pathway with Wnt..jpg]]
[[Image:Canonical Wnt pathway with Wnt..jpg]]
-
'''Figure 3''': The canonical Wnt pathway when Wnt is present. The inhibition of the destruction complex allows ß-catenin translocation from cytoplasm to nucleus.
+
'''Figure 6''': The canonical Wnt pathway when Wnt is present. The inhibition of the destruction complex allows ß-catenin translocation from cytoplasm to nucleus. Source: Gpruett2/CC BY-SA [https://commons.wikimedia.org/wiki/File:Canonical_Wnt_pathway_with_Wnt..jpg]
== References ==
== References ==
<references/>
<references/>

Current revision

Crystal Structure of a Full-Length Zebrafish Beta-Catenin

ß-catenin is an important element in cell-cell adherens junctions, called cadherins. Reported in all Eukaryota (Eukaryota) phylum, in humans the gene CTNNB1 (CTNNB1) transcribes a 95kDa protein that allows cadherins to anchor in cytoeskeleton (actin filaments) by connecting cytoplasmic proteins. Besides that, it is an essential regulator of the canonical Wnt pathway [1] (related to embryonic development). Disturbance of this activity is associated with cancer and other diseases. Therefore, ß-catenin is an important target for developing medication for many diseases, with considerable interest in its structure. [2]

Structure of ß-catenin from Zebrafish

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

Isabela Fonseca de Oliveira Granha

Personal tools