Journal:Acta Cryst D:S2059798320011869

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 19: Line 19:
In the intensity deconvolution methods, the randomly distributed two different kinds of layers (third in Fig. 6a) were supposed to accumulate into two mosaic domains (fourth in Fig. 6a), which is similar to twining (Dauter & Jaskolski, 2016)<ref name="Dauter">PMID:28132496</ref>. The corrected intensities could be obtained by dividing the observed value by the factor of [(2''k''<sup>2</sup>-2k+1)+2k(1-k)cos⁡(2πh''t''<sub>d</sub>)]. Therefore, LTD problem could be solved.
In the intensity deconvolution methods, the randomly distributed two different kinds of layers (third in Fig. 6a) were supposed to accumulate into two mosaic domains (fourth in Fig. 6a), which is similar to twining (Dauter & Jaskolski, 2016)<ref name="Dauter">PMID:28132496</ref>. The corrected intensities could be obtained by dividing the observed value by the factor of [(2''k''<sup>2</sup>-2k+1)+2k(1-k)cos⁡(2πh''t''<sub>d</sub>)]. Therefore, LTD problem could be solved.
-
[[Image:Figure6.png|thumb|390px|left|'''Figure 6''' A lattice-translocation defect model. (a) The lattice has a layer structure with layers (parallel to the ac plane) stacked along the b direction. (b) The particle-size broadening introduced by the finite unit-cell translations.]]
+
[[Image:Figure_6.png|thumb|390px|left|'''Figure 6''' A lattice-translocation defect model. (a) The lattice has a layer structure with layers (parallel to the ac plane) stacked along the b direction. (b) The particle-size broadening introduced by the finite unit-cell translations.]]
{{Clear}}
{{Clear}}

Revision as of 11:24, 21 September 2020

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

Alexander Berchansky, Jaime Prilusky

This page complements a publication in scientific journals and is one of the Proteopedia's Interactive 3D Complement pages. For aditional details please see I3DC.
Personal tools