Sandbox GGC7
From Proteopedia
(Difference between revisions)
Line 8: | Line 8: | ||
The structure of IDE is a <scene name='75/752270/Ide_homodimer/1'>homodimer</scene> with two N-terminal domains, which forms the catalytic site and two C-terminal domains that facilitates the substrate binding <ref>DOI 10.1074/jbc.M900068200</ref>. The N-terminal domains are connected to the C-terminal domains via a 28-residue loop that forms a chamber that is shaped like a triangular prism. | The structure of IDE is a <scene name='75/752270/Ide_homodimer/1'>homodimer</scene> with two N-terminal domains, which forms the catalytic site and two C-terminal domains that facilitates the substrate binding <ref>DOI 10.1074/jbc.M900068200</ref>. The N-terminal domains are connected to the C-terminal domains via a 28-residue loop that forms a chamber that is shaped like a triangular prism. | ||
- | Domain 1 houses the <scene name='75/752270/Ide_monomer/1'>metal binding site</scene> with two histidine's and one glutamine(his 108, his 112 and glu 198), the active site of a glutamine (Glu 111), ATP binding site (Arg 429) and the Zn2+ ion cofactor. Several residues of domains 1 & 4 create a polar area of the triangular cavity, while residues of domains 2 & 3 create a nonpolar region of the cavity. | + | Domain 1 houses the <scene name='75/752270/Ide_monomer/1'>metal binding site</scene> with two histidine's and one glutamine(his 108, his 112 and glu 198), the <scene name='75/752270/Ide_atp_binding-active_sites/1'>active site</scene> of a glutamine (Glu 111), ATP binding site (Arg 429) and the Zn2+ ion cofactor. Several residues of domains 1 & 4 create a polar area of the triangular cavity, while residues of domains 2 & 3 create a nonpolar region of the cavity. |
There are two conformations for the enzyme, open and closed. In the open conformation, the insulin protein enters the enzyme opening causing a conformational change that allows the enzyme to fully recognize the protein and catalyzes protein degradation. | There are two conformations for the enzyme, open and closed. In the open conformation, the insulin protein enters the enzyme opening causing a conformational change that allows the enzyme to fully recognize the protein and catalyzes protein degradation. | ||
Revision as of 02:07, 16 November 2020
Insulin Protease (Insulin Degrading Enzyme)
|
References
- ↑ Wilcox G. Insulin and insulin resistance. Clin Biochem Rev. 2005 May;26(2):19-39. PMID:16278749
- ↑ Shen Y, Joachimiak A, Rosner MR, Tang WJ. Structures of human insulin-degrading enzyme reveal a new substrate recognition mechanism. Nature. 2006 Oct 19;443(7113):870-4. Epub 2006 Oct 11. PMID:17051221 doi:10.1038/nature05143
- ↑ Manolopoulou M, Guo Q, Malito E, Schilling AB, Tang WJ. Molecular basis of catalytic chamber-assisted unfolding and cleavage of human insulin by human insulin-degrading enzyme. J Biol Chem. 2009 May 22;284(21):14177-88. Epub 2009 Mar 25. PMID:19321446 doi:10.1074/jbc.M900068200
- ↑ Manolopoulou M, Guo Q, Malito E, Schilling AB, Tang WJ. Molecular basis of catalytic chamber-assisted unfolding and cleavage of human insulin by human insulin-degrading enzyme. J Biol Chem. 2009 May 22;284(21):14177-88. Epub 2009 Mar 25. PMID:19321446 doi:10.1074/jbc.M900068200