Sulfide quinone oxidoreductase

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 7: Line 7:
== Structure ==
== Structure ==
-
In the PDB, this structure is marked as 6OI5 and is noted as the crystal structure of human sulfide quinone oxidoreductase. This enzyme is made up of two different amino acid chains. It contains the ligand, flavin-adenine dinucleotide (FAD). The FAD is noncovalently connected to the main subunit, and it is in the oxidized state waiting to be reduced (Jackson et al., 2019). In this structure specifically, one residue was modified into s-mercaptocysteine. This modified residue is considered L-type linking and is a potential drug target (Bank, R. P. D., 2020). In humans, the SQOR is made of two tandem[http://https://proteopedia.org/wiki/index.php/Rossman_fold Rossman folds], and a C-terminal made up of two helices. Rossmann folds are composed of six beta sheets that are arranged parallel to one another with alpha helices connecting the first three strands (Jackson et al., 2019). The C-terminal extends outward from the main body of the enzyme, and is amphipathic, containing both hydrophobic and hydrophilic portions within the enzyme. The <scene name='88/881543/Hydrophobic_regions_-1/1'>hydrophobic region</scene> of the protruding C-terminal faces out from the membrane. Following that C-terminal, a penultimate helix arises and is very hydrophobic. It contains 16 hydrophobic residues, 11 of which are facing away from the membrane. The nonpolar residues on this penultimate helix are most tyrosines and methionines, and they face towards a cavity, indicating a binding location for coenzyme Q (Jackson et al., 2019). Due to the hydrophobic areas making contact to the inner areas of the membrane, the enzyme would be able to make its way towards coenzyme Q and pass off electrons to it. SQOR contains an indent that is electropositive, which will be the location for sulfane sulfur acceptors to bind. Within the middle of the indent, there is an opening just large enough to give access to the one of the reactive cysteine residues. There is a hydrogen sulfide oxidizing site which connects to a hydrophilic pocket, or tunnel, leading to the location where coenzyme Q will eventually bind (Jackson et al., 2019). Chain A is composed of alpha helices, beta sheets and has numerous binding sites. Chain A also contains many FAD-binding spots. A disulfide bridge connects the positions 161 to 339, or 201 to 379, also denoted by PDB, together (Bank, R. P. D., 2020). The spacing between the two cysteine active sites makes strong bridging between the two. The positions of the disulfide bonds are Cys201 and Cys379. Chain B is very much identical to Chain A in that it contains a <scene name='88/881543/Disulfide_bridge-1/6'>disulfide</scene> bridge at the positions Cys201 and Cys379 (Landry et al., 2019). Chain B is also made up of alpha helices and beta sheets. It is very much identical to Chain A in that it has a disulfide bridge at the same residues (Bank, 2020). The resolution of sulfide quinone oxidoreductase is 2.81 angstroms, and the sequence is 418 residues in length (Bank, R. P. D., 2020). The surface of SQOR that is facing the membrane is characterized by different charges and properties (Jackson et al., 2019). The surface that is facing towards the cellular matrix contains hydrophobic areas, as well as the hydrophobic coenzyme Q binding pocket. The <scene name='88/881543/Hydrophobic_regions_-1/3'>surface</scene> facing the cellular matrix also has a very large positive charge which interacts with the phospholipid bilayer, which is negative. The other side of SQOR contains a large negative surface, where one of the Rossmann folds is located and where the electropositive divet is located (Jackson et al., 2019).
+
In the PDB, this structure is marked as 6OI5 and is noted as the crystal structure of human sulfide quinone oxidoreductase. This enzyme is comprised of two amino acid chains. It contains a ligand, flavin-adenine dinucleotide (FAD). The FAD is noncovalently bound to the main subunit, and it is in the oxidized state(Jackson et al., 2019). One residue in this structure was modified into s-mercaptocysteine. This modified residue is considered L-type linking and is a potential drug target (Bank, R. P. D., 2020). In humans, the SQOR is made of two tandem [http://https://proteopedia.org/wiki/index.php/Rossman_fold Rossman folds], and a C-terminal made up of two helices. Rossmann folds are composed of six beta sheets that are arranged parallel to one another with alpha helices connecting the first three strands (Jackson et al., 2019). The C-terminal extends outward from the main body of the enzyme, and is amphipathic, containing both hydrophobic and hydrophilic portions within the enzyme. The <scene name='88/881543/Hydrophobic_regions_-1/1'>hydrophobic region</scene> of the protruding C-terminal faces out from the membrane. Following that C-terminal, a penultimate helix arises and is very hydrophobic. It contains 16 hydrophobic residues, 11 of which are facing away from the membrane. The nonpolar residues on this penultimate helix are most tyrosines and methionines, and they face towards a cavity, indicating a binding location for coenzyme Q (Jackson et al., 2019). Due to the hydrophobic areas making contact to the inner areas of the membrane, the enzyme would be able to make its way towards coenzyme Q and pass off electrons to it. SQOR contains an indent that is electropositive, which will be the location for sulfane sulfur acceptors to bind. Within the middle of the indent, there is an opening just large enough to give access to the one of the reactive cysteine residues. There is a hydrogen sulfide oxidizing site which connects to a hydrophilic pocket, or tunnel, leading to the location where coenzyme Q will eventually bind (Jackson et al., 2019). Chain A is composed of alpha helices, beta sheets and has numerous binding sites. Chain A also contains many FAD-binding spots. A disulfide bridge connects the positions 161 to 339, or 201 to 379, also denoted by PDB, together (Bank, R. P. D., 2020). The spacing between the two cysteine active sites makes strong bridging between the two. The positions of the disulfide bonds are Cys201 and Cys379. Chain B is very much identical to Chain A in that it contains a <scene name='88/881543/Disulfide_bridge-1/6'>disulfide</scene> bridge at the positions Cys201 and Cys379 (Landry et al., 2019). Chain B is also made up of alpha helices and beta sheets. It is very much identical to Chain A in that it has a disulfide bridge at the same residues (Bank, 2020). The resolution of sulfide quinone oxidoreductase is 2.81 angstroms, and the sequence is 418 residues in length (Bank, R. P. D., 2020). The surface of SQOR that is facing the membrane is characterized by both positive and negative charges (Jackson et al., 2019). The surface that is facing towards the cellular matrix contains hydrophobic areas, as well as the hydrophobic coenzyme Q binding pocket. The <scene name='88/881543/Hydrophobic_regions_-1/3'>surface</scene> facing the cellular matrix also has a very large positive charge which interacts with the phospholipid bilayer, which is negative. The other side of SQOR contains a large negative surface, where one of the Rossmann folds is located and where the electropositive divet is located (Jackson et al., 2019).
== Function ==
== Function ==
Line 14: Line 14:
Hydrogen sulfide metabolism occurs within the mitochondria and consists of about four enzymes. Hydrogen sulfide is flammable, toxic, and has an unpleasant smell. It controls many physiological processes in the cardiovascular, gastrointestinal, and nervous system (Landry et al., 2019). The first enzyme involved in the catabolism of hydrogen sulfide is SQOR. The role of SQOR in hydrogen sulfide metabolism is to create thiosulfate by transferring sulfane sulfur atoms from the hydrogen sulfide present (Quinzii et al., 2017). Electrons are transported to the electron transport chain of the mitochondria to reduce coenzyme Q, which occurs in the coenzyme Q binding pocket of SQOR. This is considered a half reaction for both parts because the first part of the reaction is where there is the catabolism of the hydrogen sulfide. The step of this reaction would be the pass off of electrons to coenzyme (Landry et al., 2019). Sulfur dioxygenases is the next enzyme that is used to convert GSH persulfide to sulfite. The sulfite produced then gets oxidized by sulfite oxidase to become sulfate. An alternate route to produce thiosulfate would be thiosulfate sulfurtransferase converting sulfide to the desired thiosulfate by adding a persulfide to it (Quinzii et al., 2017).
Hydrogen sulfide metabolism occurs within the mitochondria and consists of about four enzymes. Hydrogen sulfide is flammable, toxic, and has an unpleasant smell. It controls many physiological processes in the cardiovascular, gastrointestinal, and nervous system (Landry et al., 2019). The first enzyme involved in the catabolism of hydrogen sulfide is SQOR. The role of SQOR in hydrogen sulfide metabolism is to create thiosulfate by transferring sulfane sulfur atoms from the hydrogen sulfide present (Quinzii et al., 2017). Electrons are transported to the electron transport chain of the mitochondria to reduce coenzyme Q, which occurs in the coenzyme Q binding pocket of SQOR. This is considered a half reaction for both parts because the first part of the reaction is where there is the catabolism of the hydrogen sulfide. The step of this reaction would be the pass off of electrons to coenzyme (Landry et al., 2019). Sulfur dioxygenases is the next enzyme that is used to convert GSH persulfide to sulfite. The sulfite produced then gets oxidized by sulfite oxidase to become sulfate. An alternate route to produce thiosulfate would be thiosulfate sulfurtransferase converting sulfide to the desired thiosulfate by adding a persulfide to it (Quinzii et al., 2017).
== Uses of SQOR ==
== Uses of SQOR ==
-
Sulfide quinone oxidoreductase is essential for maintaining healthy levels of hydrogen sulfide within the body. This makes SQOR a drug target for pharmaceutical companies. As stated, SQOR can use a multitude of acceptors, also making it open for more diverse ideas in drug design. Hydrogen sulfide’s role within the cardiovascular system indicates SQOR is an important enzyme in increasing or lowering H2S levels. Heart failure has been recently seen to be linked to hydrogen sulfide. With that, pharmaceutical companies are seeing this as a possible point of interest in creating potential cardiovascular drugs. Additionally, hydrogen sulfide aids in post-translational modification (Jackson et al., 2019). Hydrogen sulfide also regulates ion channels and aids in neuron transmission (Quinzii et al., 2017). Due to its importance in maintaining physiological levels of hydrogen sulfide, SQOR is a possible drug target to decrease cardiovascular and neurological complications and aid in biological processes. Due to hydrogen sulfide being present in the gastrointestinal tract, it is being seen that there is a correlation between levels of hydrogen sulfide and Crohn's disease. It has been seen in Crohn’s patients that there is a substantial amount of hydrogen sulfide and lower amounts of the hydrogen sulfide metabolism enzymes (Quinzii et al., 2017). For this reason SQOR has another reason to become a drug target.
+
Sulfide quinone oxidoreductase is essential for maintaining healthy levels of hydrogen sulfide within the body. This makes SQOR an attractive drug target. As stated, SQOR can use a multitude of acceptors, also making it open for more diverse ideas in drug design. Hydrogen sulfide’s role within the cardiovascular system indicates SQOR is an important enzyme in increasing or lowering H2S levels. Heart failure has been recently seen to be linked to hydrogen sulfide. With that, pharmaceutical companies are seeing this as a possible point of interest in creating potential cardiovascular drugs. Additionally, hydrogen sulfide aids in post-translational modification (Jackson et al., 2019). Hydrogen sulfide also regulates ion channels and aids in neuron transmission (Quinzii et al., 2017). Due to its importance in maintaining physiological levels of hydrogen sulfide, SQOR is a possible drug target to decrease cardiovascular and neurological complications and aid in biological processes. Due to hydrogen sulfide being present in the gastrointestinal tract, it is being seen that there is a correlation between levels of hydrogen sulfide and Crohn's disease. It has been seen in Crohn’s patients that there is a substantial amount of hydrogen sulfide and lower amounts of the hydrogen sulfide metabolism enzymes (Quinzii et al., 2017). For this reason SQOR has another reason to become a drug target.
== Landmarks on SQOR ==
== Landmarks on SQOR ==

Revision as of 15:22, 29 April 2021

Introduction to SQOR

Oxidoreductases are used to catalyze the movement of electrons between an oxidant and a reductant. Sulfide quinone oxidoreductase, , is an integral membrane protein used in the mitochondria during metabolism to oxidize hydrogen sulfide with assistance from a quinone (Jackson et al., 2019). This enzyme marks the committed step of the sulfide oxidation pathway. SQOR is also the enzyme involved in the irreversible step of hydrogen sulfide metabolism (Landry et al., 2019). In the environment, sulfide is found in aquatic marine environments and in soil but is typically produced by prokaryotes and eukaryotes through catabolism (Lencina et al., 2013). SQOR uses coenzyme Q as the electron acceptor, and it uses sulfide, sulfite, cyanide, or glutathione as a sulfane acceptor (“SQOR - Sulfide:quinone oxidoreductase, mitochondrial precursor”, 2021). Sulfane, or thiosulfoxide sulfur, is an essential molecule in the regulation of cellular processes. It has the capabilities to create cofactors as well as modify enzymatic activities (Toohey & Cooper, 2014). Coenzyme Q is essential for electron transfer in metabolic processes, anabolic and catabolic. In bacterial SQOR, cytochrome C is used as the electron acceptor (Jackson et al., 2019). The gasotransmitter, hydrogen sulfide or H2S, acts in biological processes and can be used as a target in drug interactions, which can be observed in mitochondrial metabolism (Jackson et al., 2019). Hydrogen sulfide signaling is used in the cardiovascular system to prevent the development of cardiovascular diseases, such as hypertension (Jackson et al., 2019). SQOR can also be found in bacteria, producing sulfane sulfur metabolites (Jackson et al., 2019). In contrast to human SQOR, it does not use a sulfane acceptor. In humans, SQOR belongs to the flavoprotein disulfide reductase (FDR) family (Miller, 2013). SQOR is also in the pyridine nucleotide- disulfide oxidoreductase family. There are also various types of SQORs found, such as SqrA, SqrB, SqrC, SqrD, SqrE, and SqrF (Lencina, 2013). The crystallization method used on this SQOR was vapor diffusion at a pH of 7, which in result, gave indicators of the length and structure of this monumental enzyme.

Caption for this structure

Drag the structure with the mouse to rotate

References

  1. Hanson, R. M., Prilusky, J., Renjian, Z., Nakane, T. and Sussman, J. L. (2013), JSmol and the Next-Generation Web-Based Representation of 3D Molecular Structure as Applied to Proteopedia. Isr. J. Chem., 53:207-216. doi:http://dx.doi.org/10.1002/ijch.201300024
  2. Herraez A. Biomolecules in the computer: Jmol to the rescue. Biochem Mol Biol Educ. 2006 Jul;34(4):255-61. doi: 10.1002/bmb.2006.494034042644. PMID:21638687 doi:10.1002/bmb.2006.494034042644

Proteopedia Page Contributors and Editors (what is this?)

LeAnn Sweeney, Michal Harel, Jason Telford, Jaime Prilusky

Personal tools