Sulfide quinone oxidoreductase
From Proteopedia
Line 1: | Line 1: | ||
==Introduction to SQOR== | ==Introduction to SQOR== | ||
- | Oxidoreductases are used to catalyze the movement of electrons between an oxidant and a reductant. Sulfide quinone oxidoreductase, <scene name='88/881543/Sqor_-_1/1'>SQOR</scene>, is an integral membrane protein used in the mitochondria during metabolism to oxidize hydrogen sulfide with assistance from a quinone <ref name="jackson 1">PMID:30905673</ref>. This enzyme marks the committed step of the sulfide oxidation pathway. SQOR is also the enzyme involved in the irreversible step of hydrogen sulfide metabolism <ref name="landry">PMID:31591036</ref>. In the environment, sulfide is found in aquatic marine environments and in soil but is typically produced by prokaryotes and eukaryotes through catabolism (Lencina et al., 2013). SQOR uses coenzyme Q as the electron acceptor, and it uses sulfide, sulfite, cyanide, or glutathione as a sulfane acceptor (“SQOR - Sulfide:quinone oxidoreductase, mitochondrial precursor”, 2021). Sulfane, or thiosulfoxide sulfur, is an essential molecule in the regulation of cellular processes. It has the capabilities to create cofactors as well as modify enzymatic activities <ref name="toohey" />. Coenzyme Q is essential for electron transfer in metabolic processes, anabolic and catabolic. In bacterial SQOR, cytochrome C is used as the electron acceptor <ref name="jackson 1" />. The gasotransmitter, hydrogen sulfide or H2S, acts in biological processes and can be used as a target in drug interactions, which can be observed in mitochondrial metabolism <ref name="jackson 1">PMID:30905673</ref>. Hydrogen sulfide signaling is used in the cardiovascular system to prevent the development of cardiovascular diseases, such as hypertension <ref name="jackson 1"/>. SQOR can also be found in bacteria, producing sulfane sulfur metabolites <ref name="jackson 1" />. In contrast to human SQOR, it does not use a sulfane acceptor. In humans, SQOR belongs to the flavoprotein disulfide reductase (FDR) family (Miller, 2013). SQOR is also in the pyridine nucleotide- disulfide oxidoreductase family. There are also various types of SQORs found, such as SqrA, SqrB, SqrC, SqrD, SqrE, and SqrF (Lencina, 2013). The crystallization method used on this SQOR was vapor diffusion at a pH of 7, which in result, gave indicators of the length and structure of this monumental enzyme. | + | Oxidoreductases are used to catalyze the movement of electrons between an oxidant and a reductant. Sulfide quinone oxidoreductase, <scene name='88/881543/Sqor_-_1/1'>SQOR</scene>, is an integral membrane protein used in the mitochondria during metabolism to oxidize hydrogen sulfide with assistance from a quinone <ref name="jackson 1">PMID:30905673</ref>. This enzyme marks the committed step of the sulfide oxidation pathway. SQOR is also the enzyme involved in the irreversible step of hydrogen sulfide metabolism <ref name="landry">PMID:31591036</ref>. In the environment, sulfide is found in aquatic marine environments and in soil but is typically produced by prokaryotes and eukaryotes through catabolism (Lencina et al., 2013). SQOR uses coenzyme Q as the electron acceptor, and it uses sulfide, sulfite, cyanide, or glutathione as a sulfane acceptor (“SQOR - Sulfide:quinone oxidoreductase, mitochondrial precursor”, 2021). Sulfane, or thiosulfoxide sulfur, is an essential molecule in the regulation of cellular processes. It has the capabilities to create cofactors as well as modify enzymatic activities <ref name="toohey" />. Coenzyme Q is essential for electron transfer in metabolic processes, anabolic and catabolic. In bacterial SQOR, cytochrome C is used as the electron acceptor <ref name="jackson 1" />. The gasotransmitter, hydrogen sulfide or H2S, acts in biological processes and can be used as a target in drug interactions, which can be observed in mitochondrial metabolism <ref name="jackson 1">PMID:30905673</ref>. Hydrogen sulfide signaling is used in the cardiovascular system to prevent the development of cardiovascular diseases, such as hypertension <ref name="jackson 1"/>. SQOR can also be found in bacteria, producing sulfane sulfur metabolites <ref name="jackson 1">PMID:30905673</ref>. In contrast to human SQOR, it does not use a sulfane acceptor. In humans, SQOR belongs to the flavoprotein disulfide reductase (FDR) family (Miller, 2013). SQOR is also in the pyridine nucleotide- disulfide oxidoreductase family. There are also various types of SQORs found, such as SqrA, SqrB, SqrC, SqrD, SqrE, and SqrF (Lencina, 2013). The crystallization method used on this SQOR was vapor diffusion at a pH of 7, which in result, gave indicators of the length and structure of this monumental enzyme. |
<StructureSection load='6oi5' size='340' side='right' caption='Caption for this structure' scene=''> | <StructureSection load='6oi5' size='340' side='right' caption='Caption for this structure' scene=''> |
Revision as of 17:42, 29 April 2021
Introduction to SQOR
Oxidoreductases are used to catalyze the movement of electrons between an oxidant and a reductant. Sulfide quinone oxidoreductase, , is an integral membrane protein used in the mitochondria during metabolism to oxidize hydrogen sulfide with assistance from a quinone [1]. This enzyme marks the committed step of the sulfide oxidation pathway. SQOR is also the enzyme involved in the irreversible step of hydrogen sulfide metabolism [2]. In the environment, sulfide is found in aquatic marine environments and in soil but is typically produced by prokaryotes and eukaryotes through catabolism (Lencina et al., 2013). SQOR uses coenzyme Q as the electron acceptor, and it uses sulfide, sulfite, cyanide, or glutathione as a sulfane acceptor (“SQOR - Sulfide:quinone oxidoreductase, mitochondrial precursor”, 2021). Sulfane, or thiosulfoxide sulfur, is an essential molecule in the regulation of cellular processes. It has the capabilities to create cofactors as well as modify enzymatic activities [3]. Coenzyme Q is essential for electron transfer in metabolic processes, anabolic and catabolic. In bacterial SQOR, cytochrome C is used as the electron acceptor [1]. The gasotransmitter, hydrogen sulfide or H2S, acts in biological processes and can be used as a target in drug interactions, which can be observed in mitochondrial metabolism [1]. Hydrogen sulfide signaling is used in the cardiovascular system to prevent the development of cardiovascular diseases, such as hypertension [1]. SQOR can also be found in bacteria, producing sulfane sulfur metabolites [1]. In contrast to human SQOR, it does not use a sulfane acceptor. In humans, SQOR belongs to the flavoprotein disulfide reductase (FDR) family (Miller, 2013). SQOR is also in the pyridine nucleotide- disulfide oxidoreductase family. There are also various types of SQORs found, such as SqrA, SqrB, SqrC, SqrD, SqrE, and SqrF (Lencina, 2013). The crystallization method used on this SQOR was vapor diffusion at a pH of 7, which in result, gave indicators of the length and structure of this monumental enzyme.
|
References
- ↑ 1.00 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09 1.10 1.11 1.12 1.13 1.14 1.15 Jackson MR, Loll PJ, Jorns MS. X-Ray Structure of Human Sulfide:Quinone Oxidoreductase: Insights into the Mechanism of Mitochondrial Hydrogen Sulfide Oxidation. Structure. 2019 Mar 15. pii: S0969-2126(19)30080-2. doi:, 10.1016/j.str.2019.03.002. PMID:30905673 doi:http://dx.doi.org/10.1016/j.str.2019.03.002
- ↑ 2.0 2.1 2.2 2.3 Landry AP, Moon S, Kim H, Yadav PK, Guha A, Cho US, Banerjee R. A Catalytic Trisulfide in Human Sulfide Quinone Oxidoreductase Catalyzes Coenzyme A Persulfide Synthesis and Inhibits Butyrate Oxidation. Cell Chem Biol. 2019 Nov 21;26(11):1515-1525.e4. doi:, 10.1016/j.chembiol.2019.09.010. Epub 2019 Oct 4. PMID:31591036 doi:http://dx.doi.org/10.1016/j.chembiol.2019.09.010
- ↑ Cite error: Invalid
<ref>
tag; no text was provided for refs namedtoohey
- ↑ Hanson, R. M., Prilusky, J., Renjian, Z., Nakane, T. and Sussman, J. L. (2013), JSmol and the Next-Generation Web-Based Representation of 3D Molecular Structure as Applied to Proteopedia. Isr. J. Chem., 53:207-216. doi:http://dx.doi.org/10.1002/ijch.201300024
- ↑ Herraez A. Biomolecules in the computer: Jmol to the rescue. Biochem Mol Biol Educ. 2006 Jul;34(4):255-61. doi: 10.1002/bmb.2006.494034042644. PMID:21638687 doi:10.1002/bmb.2006.494034042644
- ↑ Cite error: Invalid
<ref>
tag; no text was provided for refs namedjackson_2
- ↑ Cite error: Invalid
<ref>
tag; no text was provided for refs namedquinzii