Sulfide quinone oxidoreductase

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 25: Line 25:
</StructureSection>
</StructureSection>
== References ==
== References ==
-
 
+
<ref name=Bank, R. P. D. (2020). RCSB PDB - 6OI5: Crystal structure of human Sulfide Quinone Oxidoreductase. RSCB Protein Data Bank. https://www.rcsb.org/structure/6OI5>
<references/>
<references/>

Revision as of 18:07, 29 April 2021

Introduction to SQOR

Oxidoreductases are used to catalyze the movement of electrons between an oxidant and a reductant. Sulfide quinone oxidoreductase, , is an integral membrane protein used in the mitochondria during metabolism to oxidize hydrogen sulfide with assistance from a quinone [1]. This enzyme marks the committed step of the sulfide oxidation pathway. SQOR is also the enzyme involved in the irreversible step of hydrogen sulfide metabolism [2]. In the environment, sulfide is found in aquatic marine environments and in soil but is typically produced by prokaryotes and eukaryotes through catabolism [3]. SQOR uses coenzyme Q as the electron acceptor, and it uses sulfide, sulfite, cyanide, or glutathione as a sulfane acceptor [4]. Sulfane, or thiosulfoxide sulfur, is an essential molecule in the regulation of cellular processes. It has the capabilities to create cofactors as well as modify enzymatic activities [5]. Coenzyme Q is essential for electron transfer in metabolic processes, anabolic and catabolic. In bacterial SQOR, cytochrome C is used as the electron acceptor [1]. The gasotransmitter, hydrogen sulfide or H2S, acts in biological processes and can be used as a target in drug interactions, which can be observed in mitochondrial metabolism [1]. Hydrogen sulfide signaling is used in the cardiovascular system to prevent the development of cardiovascular diseases, such as hypertension [1]. SQOR can also be found in bacteria, producing sulfane sulfur metabolites [1]. In contrast to human SQOR, it does not use a sulfane acceptor. In humans, SQOR belongs to the flavoprotein disulfide reductase (FDR) family (Miller, 2013). SQOR is also in the pyridine nucleotide- disulfide oxidoreductase family. There are also various types of SQORs found, such as SqrA, SqrB, SqrC, SqrD, SqrE, and SqrF [3]. The crystallization method used on this SQOR was vapor diffusion at a pH of 7, which in result, gave indicators of the length and structure of this monumental enzyme.

Caption for this structure

Drag the structure with the mouse to rotate

References

[10]

Proteopedia Page Contributors and Editors (what is this?)

LeAnn Sweeney, Michal Harel, Jason Telford, Jaime Prilusky

Personal tools