Saporin
From Proteopedia
(Difference between revisions)
Line 1: | Line 1: | ||
==Your Heading Here (maybe something like 'Structure')== | ==Your Heading Here (maybe something like 'Structure')== | ||
- | <StructureSection load=' | + | <StructureSection load='1stp' size='340' side='right' caption='Caption for this structure' scene=''> |
This is a default text for your page '''Saporin'''. Click above on '''edit this page''' to modify. Be careful with the < and > signs. | This is a default text for your page '''Saporin'''. Click above on '''edit this page''' to modify. Be careful with the < and > signs. | ||
You may include any references to papers as in: the use of JSmol in Proteopedia <ref>DOI 10.1002/ijch.201300024</ref> or to the article describing Jmol <ref>PMID:21638687</ref> to the rescue. | You may include any references to papers as in: the use of JSmol in Proteopedia <ref>DOI 10.1002/ijch.201300024</ref> or to the article describing Jmol <ref>PMID:21638687</ref> to the rescue. | ||
== Function == | == Function == | ||
- | Saporin | + | Saporin function here. |
- | + | == Disease == | |
+ | |||
+ | == Relevance == | ||
== Structural highlights == | == Structural highlights == | ||
- | Type 1 RIPS are monomeric, meaning they have one part <ref name="fab">DOI: 10.3390/toxins9100314</ref>. Saporin-S6 at maturity is 256 amino acids long <ref name="ncbi" />. While saporin consists of different residues and molecules, there is only one Chain A in it, and thus is monomeric. Chain A is a polypeptide weighing 30 KDa <ref name="nano">DOI: 10.3390/cancers12020498</ref>. This chain consists of beta-sheets and alpha-helixes. The β-sheets make up the N-terminal domain, while the 𝛼-helix portion is the C-terminal domain <ref name="rcsb" />. In the figure of Chain A, the 𝛼-helices are spiral-shaped strands, while the β-sheets are more of a flat strand. | ||
- | |||
- | There is an active site within this chain that consists of five residues. These residues are Tyr⁷², Tyr¹²⁰, Glu¹⁷⁶, Arg¹⁷⁹, and Trp²⁰⁸ <ref name="ncbi" />. Other RIPs also have these same residues in their active sites. The saporin active has Glu¹⁷⁶, Arg¹⁷⁹, and Trp²⁰⁸ in the exact same position as the other ribosome-inactivating proteins. There is a difference in Tyr⁷², which has different side-chain conformations in RIPs and thus is not the same in saporin and other RIPs. This Tyr⁷² is the residue that interacts with the adenine in the cleavage of adenine and the ribosome <ref name="rcsb" />. | ||
- | |||
- | Saporin can also be complexed with other inhibitors. One of these is cyclic tetranucleotide inhibitor in complex with saporin-L1. This can be used because the cyclic tetranucleotide can take the place of the recognition loop for saporin of 28S rRNA <ref name="pnas">DOI: 10.1073/pnas.0911606106</ref>. It is also interesting to note that Ricin can also be complex with other inhibitors like saporin. Saporin is a homologue of Ricin A-Chain which means they are similar in structure <ref name="pnas" />. This ability also allows for saporin-S6 to be conjugated with specific targeting proteins, and thus the saporin-S6 is able to be delivered to the cell. This happens due to the antibodies and is referred to as an immunotoxin <ref name="ncbi" />. The antibodies are recognized by the cell, and the cell binds them. Since the saporin-S6 is in complex with the antibody, it is also taken to the cell. Some other carries can also be used, such as growth factors, antigens, and growth hormones <ref name="ncbi" />. | ||
This is a sample scene created with SAT to <scene name="/12/3456/Sample/1">color</scene> by Group, and another to make <scene name="/12/3456/Sample/2">a transparent representation</scene> of the protein. You can make your own scenes on SAT starting from scratch or loading and editing one of these sample scenes. | This is a sample scene created with SAT to <scene name="/12/3456/Sample/1">color</scene> by Group, and another to make <scene name="/12/3456/Sample/2">a transparent representation</scene> of the protein. You can make your own scenes on SAT starting from scratch or loading and editing one of these sample scenes. |
Revision as of 17:35, 21 April 2022
Your Heading Here (maybe something like 'Structure')
|
References
- ↑ Hanson, R. M., Prilusky, J., Renjian, Z., Nakane, T. and Sussman, J. L. (2013), JSmol and the Next-Generation Web-Based Representation of 3D Molecular Structure as Applied to Proteopedia. Isr. J. Chem., 53:207-216. doi:http://dx.doi.org/10.1002/ijch.201300024
- ↑ Herraez A. Biomolecules in the computer: Jmol to the rescue. Biochem Mol Biol Educ. 2006 Jul;34(4):255-61. doi: 10.1002/bmb.2006.494034042644. PMID:21638687 doi:10.1002/bmb.2006.494034042644