Sandbox Reserved 1736

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 1: Line 1:
==Structure==
==Structure==
<StructureSection load='7qus' size='350' side='right' caption='C3 symmetry of SARS-CoV-2 spike protein' scene=''>
<StructureSection load='7qus' size='350' side='right' caption='C3 symmetry of SARS-CoV-2 spike protein' scene=''>
- 
==SARS-CoV-2 Spike Protein==
==SARS-CoV-2 Spike Protein==
The SARS-CoV-2 spike protein (Severe acute respiratory syndrome coronavirus 2) is a protein that has emerged from the COVID-19 virus beginning in December 2019. Both the S1 and S2 subunits are the last two regions that manage the processes of the receptor binding and the membrane fusing.
The SARS-CoV-2 spike protein (Severe acute respiratory syndrome coronavirus 2) is a protein that has emerged from the COVID-19 virus beginning in December 2019. Both the S1 and S2 subunits are the last two regions that manage the processes of the receptor binding and the membrane fusing.

Revision as of 20:17, 26 November 2022

Structure

C3 symmetry of SARS-CoV-2 spike protein

Drag the structure with the mouse to rotate

References

  1. 1.0 1.1 Huang, Y.; Yang, C.; Xu, X.-feng; Xu, W.; Liu, S.-wen. Structural and Functional Properties of SARS-COV-2 Spike Protein: Potential Antivirus Drug Development for Covid-19. Acta Pharmacologica Sinica 2020, 41 (9), 1141–1149.
  2. Xia, X. Domains and Functions of Spike Protein in SARS-COV-2 in the Context of Vaccine Design. Viruses 2021, 13(1).
  3. 3.0 3.1 Bangaru, S.; Ozorowski, G.; Turner, H. L.; Antanasijevic, A.; Huang, D.; Wang, X.; Torres, J. L.; Diedrich, J. K.; Tian, J.-H.; Portnoff, A. D.; Patel, N.; Massare, M. J.; Yates, J. R.; Nemazee, D.; Paulson, J. C.; Glenn, G.; Smith, G.; Ward, A. B. Structural Analysis of Full-Length SARS-COV-2 Spike Protein from an Advanced Vaccine Candidate. Science 2020, 370 (6520), 1089–1094.
  4. Suzuki, Y. J.; Gychka, S. G. SARS-COV-2 Spike Protein Elicits Cell Signaling in Human Host Cells: Implications for Possible Consequences of Covid-19 Vaccines. Vaccines 2021, 9 (1), 36.
  5. Weisblum, Y.; Schmidt, F.; Zhang, F.; DaSilva, J.; Poston, D.; Lorenzi, J. C. C.; Muecksch, F.; Rutkowska, M.; Hoffmann, H.-H.; Michailidis, E.; Gaebler, C.; Agudelo, M.; Cho, A.; Wang, Z.; Gazumyan, A.; Cipolla, M.; Luchsinger, L.; Hillyer, C. D.; Caskey, M.; Robbiani, D. F.; Rice, C. M.; Nussenzweig, M. C.; Hatziioannou, T.; Bieniasz, P. D. Escape from Neutralizing Antibodies by SARS-COV-2 Spike Protein Variants. eLife 2020, 9.
  6. Guruprasad, L. Human Sars-CoV‐2 Spike Protein Mutations. Proteins: Structure, Function, and Bioinformatics 2021, 89 (5), 569–576.
  7. Zhou, T.; Tsybovsky, Y.; Gorman, J.; Rapp, M.; Cerutti, G.; Chuang, G.-Y.; Katsamba, P. S.; Sampson, J. M.; Schön, A.; Bimela, J.; Boyington, J. C.; Nazzari, A.; Olia, A. S.; Shi, W.; Sastry, M.; Stephens, T.; Stuckey, J.; Teng, I.-T.; Wang, P.; Wang, S.; Zhang, B.; Friesner, R. A.; Ho, D. D.; Mascola, J. R.; Shapiro, L.; Kwong, P. D. Cryo-EM Structures of SARS-COV-2 Spike without and with Ace2 Reveal a Ph-Dependent Switch to Mediate Endosomal Positioning of Receptor-Binding Domains. Cell Host & Microbe 2020, 28 (6).
Personal tools