|
|
Line 3: |
Line 3: |
| <StructureSection load='5ddr' size='340' side='right'caption='[[5ddr]], [[Resolution|resolution]] 2.60Å' scene=''> | | <StructureSection load='5ddr' size='340' side='right'caption='[[5ddr]], [[Resolution|resolution]] 2.60Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[5ddr]] is a 4 chain structure with sequence from [http://en.wikipedia.org/wiki/Human Human] and [http://en.wikipedia.org/wiki/Synechococcus_elongatus Synechococcus elongatus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5DDR OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5DDR FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[5ddr]] is a 4 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens] and [https://en.wikipedia.org/wiki/Synechococcus_elongatus Synechococcus elongatus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5DDR OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=5DDR FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=CS:CESIUM+ION'>CS</scene>, <scene name='pdbligand=GLN:GLUTAMINE'>GLN</scene>, <scene name='pdbligand=K:POTASSIUM+ION'>K</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene>, <scene name='pdbligand=NA:SODIUM+ION'>NA</scene></td></tr> | + | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CS:CESIUM+ION'>CS</scene>, <scene name='pdbligand=GLN:GLUTAMINE'>GLN</scene>, <scene name='pdbligand=K:POTASSIUM+ION'>K</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene>, <scene name='pdbligand=NA:SODIUM+ION'>NA</scene></td></tr> |
- | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[5ddo|5ddo]], [[5ddp|5ddp]], [[5ddq|5ddq]]</td></tr>
| + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=5ddr FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5ddr OCA], [https://pdbe.org/5ddr PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=5ddr RCSB], [https://www.ebi.ac.uk/pdbsum/5ddr PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=5ddr ProSAT]</span></td></tr> |
- | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">SNRPA ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 HUMAN])</td></tr>
| + | |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5ddr FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5ddr OCA], [http://pdbe.org/5ddr PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=5ddr RCSB], [http://www.ebi.ac.uk/pdbsum/5ddr PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=5ddr ProSAT]</span></td></tr> | + | |
| </table> | | </table> |
| == Function == | | == Function == |
- | [[http://www.uniprot.org/uniprot/SNRPA_HUMAN SNRPA_HUMAN]] Binds stem loop II of U1 snRNA. It is the first snRNP to interact with pre-mRNA. This interaction is required for the subsequent binding of U2 snRNP and the U4/U6/U5 tri-snRNP. In a snRNP-free form (SF-A) may be involved in coupled pre-mRNA splicing and polyadenylation process. Binds preferentially to the 5'-UGCAC-3' motif in vitro.<ref>PMID:9848648</ref> | + | [https://www.uniprot.org/uniprot/SNRPA_HUMAN SNRPA_HUMAN] Binds stem loop II of U1 snRNA. It is the first snRNP to interact with pre-mRNA. This interaction is required for the subsequent binding of U2 snRNP and the U4/U6/U5 tri-snRNP. In a snRNP-free form (SF-A) may be involved in coupled pre-mRNA splicing and polyadenylation process. Binds preferentially to the 5'-UGCAC-3' motif in vitro.<ref>PMID:9848648</ref> |
| <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
Line 22: |
Line 20: |
| | | |
| ==See Also== | | ==See Also== |
- | *[[Riboswitch|Riboswitch]] | + | *[[Riboswitch 3D structures|Riboswitch 3D structures]] |
| == References == | | == References == |
| <references/> | | <references/> |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Human]] | + | [[Category: Homo sapiens]] |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
| [[Category: Synechococcus elongatus]] | | [[Category: Synechococcus elongatus]] |
- | [[Category: Patel, D J]] | + | [[Category: Patel DJ]] |
- | [[Category: Ren, A]] | + | [[Category: Ren A]] |
- | [[Category: Bound-form]]
| + | |
- | [[Category: L-glutamine]]
| + | |
- | [[Category: Riboswitch]]
| + | |
- | [[Category: Rna]]
| + | |
- | [[Category: Rna binding protein-rna complex]]
| + | |
| Structural highlights
Function
SNRPA_HUMAN Binds stem loop II of U1 snRNA. It is the first snRNP to interact with pre-mRNA. This interaction is required for the subsequent binding of U2 snRNP and the U4/U6/U5 tri-snRNP. In a snRNP-free form (SF-A) may be involved in coupled pre-mRNA splicing and polyadenylation process. Binds preferentially to the 5'-UGCAC-3' motif in vitro.[1]
Publication Abstract from PubMed
Naturally occurring L-glutamine riboswitches occur in cyanobacteria and marine metagenomes, where they reside upstream of genes involved in nitrogen metabolism. By combining X-ray, NMR, and MD, we characterized an L-glutamine-dependent conformational transition in the Synechococcus elongatus glutamine riboswitch from tuning fork to L-shaped alignment of stem segments. This transition generates an open ligand-binding pocket with L-glutamine selectivity enforced by Mg(2+)-mediated intermolecular interactions. The transition also stabilizes the P1 helix through a long-range "linchpin" Watson-Crick G-C pair-capping interaction, while melting a short helix below P1 potentially capable of modulating downstream readout. NMR data establish that the ligand-free glutamine riboswitch in Mg(2+) solution exists in a slow equilibrium between flexible tuning fork and a minor conformation, similar, but not identical, to the L-shaped bound conformation. We propose that an open ligand-binding pocket combined with a high conformational penalty for forming the ligand-bound state provide mechanisms for reducing binding affinity while retaining high selectivity.
Structural and Dynamic Basis for Low-Affinity, High-Selectivity Binding of L-Glutamine by the Glutamine Riboswitch.,Ren A, Xue Y, Peselis A, Serganov A, Al-Hashimi HM, Patel DJ Cell Rep. 2015 Dec 1;13(9):1800-13. doi: 10.1016/j.celrep.2015.10.062. Epub 2015 , Nov 19. PMID:26655897[2]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Lutz CS, Cooke C, O'Connor JP, Kobayashi R, Alwine JC. The snRNP-free U1A (SF-A) complex(es): identification of the largest subunit as PSF, the polypyrimidine-tract binding protein-associated splicing factor. RNA. 1998 Dec;4(12):1493-9. PMID:9848648
- ↑ Ren A, Xue Y, Peselis A, Serganov A, Al-Hashimi HM, Patel DJ. Structural and Dynamic Basis for Low-Affinity, High-Selectivity Binding of L-Glutamine by the Glutamine Riboswitch. Cell Rep. 2015 Dec 1;13(9):1800-13. doi: 10.1016/j.celrep.2015.10.062. Epub 2015 , Nov 19. PMID:26655897 doi:http://dx.doi.org/10.1016/j.celrep.2015.10.062
|