|
|
(2 intermediate revisions not shown.) |
Line 1: |
Line 1: |
| | | |
| ==1.20 A resolution structure of Norovirus 3CL protease in complex with a triazole-based macrocyclic (21-mer) inhibitor== | | ==1.20 A resolution structure of Norovirus 3CL protease in complex with a triazole-based macrocyclic (21-mer) inhibitor== |
- | <StructureSection load='5e0j' size='340' side='right' caption='[[5e0j]], [[Resolution|resolution]] 1.20Å' scene=''> | + | <StructureSection load='5e0j' size='340' side='right'caption='[[5e0j]], [[Resolution|resolution]] 1.20Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[5e0j]] is a 1 chain structure. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5E0J OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5E0J FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[5e0j]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Norovirus_Hu/1968/US Norovirus Hu/1968/US]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5E0J OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=5E0J FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=5LJ:(PHENYLMETHYL)+~{N}-[(12~{S},15~{S},18~{S})-15-(CYCLOHEXYLMETHYL)-12-(HYDROXYMETHYL)-9,14,17-TRIS(OXIDANYLIDENE)-1,8,13,16,21,22-HEXAZABICYCLO[18.2.1]TRICOSA-20(23),21-DIEN-18-YL]CARBAMATE'>5LJ</scene>, <scene name='pdbligand=CL:CHLORIDE+ION'>CL</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.2Å</td></tr> |
- | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[5e0g|5e0g]], [[5e0h|5e0h]]</td></tr>
| + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=5LJ:(PHENYLMETHYL)+~{N}-[(12~{S},15~{S},18~{S})-15-(CYCLOHEXYLMETHYL)-12-(HYDROXYMETHYL)-9,14,17-TRIS(OXIDANYLIDENE)-1,8,13,16,21,22-HEXAZABICYCLO[18.2.1]TRICOSA-20(23),21-DIEN-18-YL]CARBAMATE'>5LJ</scene>, <scene name='pdbligand=CL:CHLORIDE+ION'>CL</scene></td></tr> |
- | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Calicivirin Calicivirin], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.4.22.66 3.4.22.66] </span></td></tr>
| + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=5e0j FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5e0j OCA], [https://pdbe.org/5e0j PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=5e0j RCSB], [https://www.ebi.ac.uk/pdbsum/5e0j PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=5e0j ProSAT]</span></td></tr> |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5e0j FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5e0j OCA], [http://pdbe.org/5e0j PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=5e0j RCSB], [http://www.ebi.ac.uk/pdbsum/5e0j PDBsum]</span></td></tr> | + | |
| </table> | | </table> |
| == Function == | | == Function == |
- | [[http://www.uniprot.org/uniprot/POLG_NVN68 POLG_NVN68]] Protein p48 may play a role in viral replication by interacting with host VAPA, a vesicle-associated membrane protein that plays a role in SNARE-mediated vesicle fusion. This interaction may target replication complex to intracellular membranes.<ref>PMID:569187</ref> <ref>PMID:11160659</ref> NTPase presumably plays a role in replication. Despite having similarities with helicases, does not seem to display any helicase activity.<ref>PMID:569187</ref> <ref>PMID:11160659</ref> Protein P22 may play a role in targeting replication complex to intracellular membranes.<ref>PMID:569187</ref> <ref>PMID:11160659</ref> Viral genome-linked protein is covalently linked to the 5'-end of the positive-strand, negative-strand genomic RNAs and subgenomic RNA. Acts as a genome-linked replication primer. May recruit ribosome to viral RNA thereby promoting viral proteins translation.<ref>PMID:569187</ref> <ref>PMID:11160659</ref> 3C-like protease processes the polyprotein: 3CLpro-RdRp is first released by autocleavage, then all other proteins are cleaved. May cleave host polyadenylate-binding protein thereby inhibiting cellular translation (By similarity).<ref>PMID:569187</ref> <ref>PMID:11160659</ref> RNA-directed RNA polymerase replicates genomic and antigenomic RNA by recognizing replications specific signals. Transcribes also a subgenomic mRNA by initiating RNA synthesis internally on antigenomic RNA. This sgRNA encodes for structural proteins. Catalyzes the covalent attachment VPg with viral RNAs (By similarity).<ref>PMID:569187</ref> <ref>PMID:11160659</ref> | + | [https://www.uniprot.org/uniprot/POLG_NVN68 POLG_NVN68] Protein p48 may play a role in viral replication by interacting with host VAPA, a vesicle-associated membrane protein that plays a role in SNARE-mediated vesicle fusion. This interaction may target replication complex to intracellular membranes.<ref>PMID:569187</ref> <ref>PMID:11160659</ref> NTPase presumably plays a role in replication. Despite having similarities with helicases, does not seem to display any helicase activity.<ref>PMID:569187</ref> <ref>PMID:11160659</ref> Protein P22 may play a role in targeting replication complex to intracellular membranes.<ref>PMID:569187</ref> <ref>PMID:11160659</ref> Viral genome-linked protein is covalently linked to the 5'-end of the positive-strand, negative-strand genomic RNAs and subgenomic RNA. Acts as a genome-linked replication primer. May recruit ribosome to viral RNA thereby promoting viral proteins translation.<ref>PMID:569187</ref> <ref>PMID:11160659</ref> 3C-like protease processes the polyprotein: 3CLpro-RdRp is first released by autocleavage, then all other proteins are cleaved. May cleave host polyadenylate-binding protein thereby inhibiting cellular translation (By similarity).<ref>PMID:569187</ref> <ref>PMID:11160659</ref> RNA-directed RNA polymerase replicates genomic and antigenomic RNA by recognizing replications specific signals. Transcribes also a subgenomic mRNA by initiating RNA synthesis internally on antigenomic RNA. This sgRNA encodes for structural proteins. Catalyzes the covalent attachment VPg with viral RNAs (By similarity).<ref>PMID:569187</ref> <ref>PMID:11160659</ref> |
| <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
Line 20: |
Line 19: |
| </div> | | </div> |
| <div class="pdbe-citations 5e0j" style="background-color:#fffaf0;"></div> | | <div class="pdbe-citations 5e0j" style="background-color:#fffaf0;"></div> |
| + | |
| + | ==See Also== |
| + | *[[Virus protease 3D structures|Virus protease 3D structures]] |
| == References == | | == References == |
| <references/> | | <references/> |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Calicivirin]] | + | [[Category: Large Structures]] |
- | [[Category: Alliston, K R]] | + | [[Category: Norovirus Hu/1968/US]] |
- | [[Category: Battaile, K P]] | + | [[Category: Alliston KR]] |
- | [[Category: Chang, K O]] | + | [[Category: Battaile KP]] |
- | [[Category: Damalanka, V C]] | + | [[Category: Chang K-O]] |
- | [[Category: Groutas, W C]] | + | [[Category: Damalanka VC]] |
- | [[Category: Kankanamalage, A C.G]] | + | [[Category: Groutas WC]] |
- | [[Category: Kim, Y]] | + | [[Category: Kankanamalage ACG]] |
- | [[Category: Lovell, S]] | + | [[Category: Kim Y]] |
- | [[Category: Lushington, G H]] | + | [[Category: Lovell S]] |
- | [[Category: Mehzabeen, N]] | + | [[Category: Lushington GH]] |
- | [[Category: Weerawarna, P M]] | + | [[Category: Mehzabeen N]] |
- | [[Category: Antiviral inhibitor]]
| + | [[Category: Weerawarna PM]] |
- | [[Category: Cell permeable]]
| + | |
- | [[Category: Norovirus]]
| + | |
- | [[Category: Norwalk virus]]
| + | |
- | [[Category: Protease]]
| + | |
- | [[Category: Protease-protease inhibitor complex]]
| + | |
- | [[Category: Triazole macrocyclic inhibitor]]
| + | |
| Structural highlights
Function
POLG_NVN68 Protein p48 may play a role in viral replication by interacting with host VAPA, a vesicle-associated membrane protein that plays a role in SNARE-mediated vesicle fusion. This interaction may target replication complex to intracellular membranes.[1] [2] NTPase presumably plays a role in replication. Despite having similarities with helicases, does not seem to display any helicase activity.[3] [4] Protein P22 may play a role in targeting replication complex to intracellular membranes.[5] [6] Viral genome-linked protein is covalently linked to the 5'-end of the positive-strand, negative-strand genomic RNAs and subgenomic RNA. Acts as a genome-linked replication primer. May recruit ribosome to viral RNA thereby promoting viral proteins translation.[7] [8] 3C-like protease processes the polyprotein: 3CLpro-RdRp is first released by autocleavage, then all other proteins are cleaved. May cleave host polyadenylate-binding protein thereby inhibiting cellular translation (By similarity).[9] [10] RNA-directed RNA polymerase replicates genomic and antigenomic RNA by recognizing replications specific signals. Transcribes also a subgenomic mRNA by initiating RNA synthesis internally on antigenomic RNA. This sgRNA encodes for structural proteins. Catalyzes the covalent attachment VPg with viral RNAs (By similarity).[11] [12]
Publication Abstract from PubMed
Outbreaks of acute gastroenteritis caused by noroviruses constitute a public health concern worldwide. To date, there are no approved drugs or vaccines for the management and prophylaxis of norovirus infections. A potentially effective strategy for the development of norovirus therapeutics entails the discovery of inhibitors of norovirus 3CL protease, an enzyme essential for noroviral replication. We describe herein the structure-based design of the first class of permeable, triazole-based macrocyclic inhibitors of norovirus 3C-like protease, as well as pertinent X-ray crystallographic, biochemical, spectroscopic, and antiviral studies.
Structure-based design and synthesis of triazole-based macrocyclic inhibitors of norovirus protease: Structural, biochemical, spectroscopic, and antiviral studies.,Weerawarna PM, Kim Y, Galasiti Kankanamalage AC, Damalanka VC, Lushington GH, Alliston KR, Mehzabeen N, Battaile KP, Lovell S, Chang KO, Groutas WC Eur J Med Chem. 2016 Aug 25;119:300-18. doi: 10.1016/j.ejmech.2016.04.013. Epub, 2016 Apr 25. PMID:27235842[13]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Burroughs JN, Brown F. Presence of a covalently linked protein on calicivirus RNA. J Gen Virol. 1978 Nov;41(2):443-6. PMID:569187
- ↑ Pfister T, Wimmer E. Polypeptide p41 of a Norwalk-like virus is a nucleic acid-independent nucleoside triphosphatase. J Virol. 2001 Feb;75(4):1611-9. PMID:11160659 doi:10.1128/JVI.75.4.1611-1619.2001
- ↑ Burroughs JN, Brown F. Presence of a covalently linked protein on calicivirus RNA. J Gen Virol. 1978 Nov;41(2):443-6. PMID:569187
- ↑ Pfister T, Wimmer E. Polypeptide p41 of a Norwalk-like virus is a nucleic acid-independent nucleoside triphosphatase. J Virol. 2001 Feb;75(4):1611-9. PMID:11160659 doi:10.1128/JVI.75.4.1611-1619.2001
- ↑ Burroughs JN, Brown F. Presence of a covalently linked protein on calicivirus RNA. J Gen Virol. 1978 Nov;41(2):443-6. PMID:569187
- ↑ Pfister T, Wimmer E. Polypeptide p41 of a Norwalk-like virus is a nucleic acid-independent nucleoside triphosphatase. J Virol. 2001 Feb;75(4):1611-9. PMID:11160659 doi:10.1128/JVI.75.4.1611-1619.2001
- ↑ Burroughs JN, Brown F. Presence of a covalently linked protein on calicivirus RNA. J Gen Virol. 1978 Nov;41(2):443-6. PMID:569187
- ↑ Pfister T, Wimmer E. Polypeptide p41 of a Norwalk-like virus is a nucleic acid-independent nucleoside triphosphatase. J Virol. 2001 Feb;75(4):1611-9. PMID:11160659 doi:10.1128/JVI.75.4.1611-1619.2001
- ↑ Burroughs JN, Brown F. Presence of a covalently linked protein on calicivirus RNA. J Gen Virol. 1978 Nov;41(2):443-6. PMID:569187
- ↑ Pfister T, Wimmer E. Polypeptide p41 of a Norwalk-like virus is a nucleic acid-independent nucleoside triphosphatase. J Virol. 2001 Feb;75(4):1611-9. PMID:11160659 doi:10.1128/JVI.75.4.1611-1619.2001
- ↑ Burroughs JN, Brown F. Presence of a covalently linked protein on calicivirus RNA. J Gen Virol. 1978 Nov;41(2):443-6. PMID:569187
- ↑ Pfister T, Wimmer E. Polypeptide p41 of a Norwalk-like virus is a nucleic acid-independent nucleoside triphosphatase. J Virol. 2001 Feb;75(4):1611-9. PMID:11160659 doi:10.1128/JVI.75.4.1611-1619.2001
- ↑ Weerawarna PM, Kim Y, Galasiti Kankanamalage AC, Damalanka VC, Lushington GH, Alliston KR, Mehzabeen N, Battaile KP, Lovell S, Chang KO, Groutas WC. Structure-based design and synthesis of triazole-based macrocyclic inhibitors of norovirus protease: Structural, biochemical, spectroscopic, and antiviral studies. Eur J Med Chem. 2016 Aug 25;119:300-18. doi: 10.1016/j.ejmech.2016.04.013. Epub, 2016 Apr 25. PMID:27235842 doi:http://dx.doi.org/10.1016/j.ejmech.2016.04.013
|