|
|
(10 intermediate revisions not shown.) |
Line 1: |
Line 1: |
- | [[Image:2bcz.gif|left|200px]] | |
| | | |
- | <!-- | + | ==Crystal Structure of a minimal, mutant all-RNA hairpin ribozyme (U39C, G8I, 2'deoxy A-1)== |
- | The line below this paragraph, containing "STRUCTURE_2bcz", creates the "Structure Box" on the page.
| + | <StructureSection load='2bcz' size='340' side='right'caption='[[2bcz]], [[Resolution|resolution]] 2.40Å' scene=''> |
- | You may change the PDB parameter (which sets the PDB file loaded into the applet)
| + | == Structural highlights == |
- | or the SCENE parameter (which sets the initial scene displayed when the page is loaded),
| + | <table><tr><td colspan='2'>[[2bcz]] is a 4 chain structure. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2BCZ OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2BCZ FirstGlance]. <br> |
- | or leave the SCENE parameter empty for the default display.
| + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.4Å</td></tr> |
- | --> | + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=NCO:COBALT+HEXAMMINE(III)'>NCO</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene></td></tr> |
- | {{STRUCTURE_2bcz| PDB=2bcz | SCENE= }}
| + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2bcz FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2bcz OCA], [https://pdbe.org/2bcz PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2bcz RCSB], [https://www.ebi.ac.uk/pdbsum/2bcz PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2bcz ProSAT]</span></td></tr> |
| + | </table> |
| + | <div style="background-color:#fffaf0;"> |
| + | == Publication Abstract from PubMed == |
| + | The hairpin ribozyme requires functional group contributions from G8 to assist in phosphodiester bond cleavage. Previously, replacement of G8 by a series of nucleobase variants showed little effect on interdomain docking, but a 3-250-fold effect on catalysis. To identify G8 features that contribute to catalysis within the hairpin ribozyme active site, structures for five base variants were determined by X-ray crystallography in a resolution range between 2.3 and 2.7 A. For comparison, a native all-RNA "G8" hairpin ribozyme structure was refined to 2.05 A resolution. The native structure revealed a scissile bond angle (tau) of 158 degrees, which is close to the requisite 180 degrees "in-line" geometry. Mutations G8(inosine), G8(diaminopurine), G8(aminopurine), G8(adenosine), and G8(uridine) folded properly, but exhibited nonideal scissile bond geometries (tau ranging from 118 degrees to 93 degrees) that paralleled their diminished solution activities. A superposition ensemble of all structures, including a previously described hairpin ribozyme-vanadate complex, indicated the scissile bond can adopt a variety of conformations resulting from perturbation of the chemical environment and provided a rationale for how the exocyclic amine of nucleobase 8 promotes productive, in-line geometry. Changes at position 8 also caused variations in the A-1 sugar pucker. In this regard, variants A8 and U8 appeared to represent nonproductive ground states in which their 2'-OH groups mimicked the pro-R, nonbridging oxygen of the vanadate transition-state complex. Finally, the results indicated that ordered water molecules bind near the 2'-hydroxyl of A-1, lending support to the hypothesis that solvent may play an important role in the reaction. |
| | | |
- | '''Crystal Structure of a minimal, mutant all-RNA hairpin ribozyme (U39C, G8I, 2'deoxy A-1)'''
| + | Water in the active site of an all-RNA hairpin ribozyme and effects of Gua8 base variants on the geometry of phosphoryl transfer.,Salter J, Krucinska J, Alam S, Grum-Tokars V, Wedekind JE Biochemistry. 2006 Jan 24;45(3):686-700. PMID:16411744<ref>PMID:16411744</ref> |
- | | + | |
- | | + | |
- | ==Overview==
| + | |
- | The hairpin ribozyme requires functional group contributions from G8 to assist in phosphodiester bond cleavage. Previously, replacement of G8 by a series of nucleobase variants showed little effect on interdomain docking, but a 3-250-fold effect on catalysis. To identify G8 features that contribute to catalysis within the hairpin ribozyme active site, structures for five base variants were determined by X-ray crystallography in a resolution range between 2.3 and 2.7 A. For comparison, a native all-RNA "G8" hairpin ribozyme structure was refined to 2.05 A resolution. The native structure revealed a scissile bond angle (tau) of 158 degrees, which is close to the requisite 180 degrees "in-line" geometry. Mutations G8(inosine), G8(diaminopurine), G8(aminopurine), G8(adenosine), and G8(uridine) folded properly, but exhibited nonideal scissile bond geometries (tau ranging from 118 degrees to 93 degrees) that paralleled their diminished solution activities. A superposition ensemble of all structures, including a previously described hairpin ribozyme-vanadate complex, indicated the scissile bond can adopt a variety of conformations resulting from perturbation of the chemical environment and provided a rationale for how the exocyclic amine of nucleobase 8 promotes productive, in-line geometry. Changes at position 8 also caused variations in the A-1 sugar pucker. In this regard, variants A8 and U8 appeared to represent nonproductive ground states in which their 2'-OH groups mimicked the pro-R, nonbridging oxygen of the vanadate transition-state complex. Finally, the results indicated that ordered water molecules bind near the 2'-hydroxyl of A-1, lending support to the hypothesis that solvent may play an important role in the reaction.
| + | |
| | | |
- | ==About this Structure==
| + | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> |
- | Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2BCZ OCA].
| + | </div> |
| + | <div class="pdbe-citations 2bcz" style="background-color:#fffaf0;"></div> |
| | | |
- | ==Reference== | + | ==See Also== |
- | Water in the active site of an all-RNA hairpin ribozyme and effects of Gua8 base variants on the geometry of phosphoryl transfer., Salter J, Krucinska J, Alam S, Grum-Tokars V, Wedekind JE, Biochemistry. 2006 Jan 24;45(3):686-700. PMID:[http://www.ncbi.nlm.nih.gov/pubmed/16411744 16411744]
| + | *[[Ribozyme 3D structures|Ribozyme 3D structures]] |
- | [[Category: Salter, J D.]] | + | == References == |
- | [[Category: Wedekind, J E.]]
| + | <references/> |
- | [[Category: G8]] | + | __TOC__ |
- | [[Category: Inosine]] | + | </StructureSection> |
- | [[Category: Ribozyme]] | + | [[Category: Large Structures]] |
- | ''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Sat May 3 20:07:41 2008''
| + | [[Category: Salter JD]] |
| + | [[Category: Wedekind JE]] |
| Structural highlights
Publication Abstract from PubMed
The hairpin ribozyme requires functional group contributions from G8 to assist in phosphodiester bond cleavage. Previously, replacement of G8 by a series of nucleobase variants showed little effect on interdomain docking, but a 3-250-fold effect on catalysis. To identify G8 features that contribute to catalysis within the hairpin ribozyme active site, structures for five base variants were determined by X-ray crystallography in a resolution range between 2.3 and 2.7 A. For comparison, a native all-RNA "G8" hairpin ribozyme structure was refined to 2.05 A resolution. The native structure revealed a scissile bond angle (tau) of 158 degrees, which is close to the requisite 180 degrees "in-line" geometry. Mutations G8(inosine), G8(diaminopurine), G8(aminopurine), G8(adenosine), and G8(uridine) folded properly, but exhibited nonideal scissile bond geometries (tau ranging from 118 degrees to 93 degrees) that paralleled their diminished solution activities. A superposition ensemble of all structures, including a previously described hairpin ribozyme-vanadate complex, indicated the scissile bond can adopt a variety of conformations resulting from perturbation of the chemical environment and provided a rationale for how the exocyclic amine of nucleobase 8 promotes productive, in-line geometry. Changes at position 8 also caused variations in the A-1 sugar pucker. In this regard, variants A8 and U8 appeared to represent nonproductive ground states in which their 2'-OH groups mimicked the pro-R, nonbridging oxygen of the vanadate transition-state complex. Finally, the results indicated that ordered water molecules bind near the 2'-hydroxyl of A-1, lending support to the hypothesis that solvent may play an important role in the reaction.
Water in the active site of an all-RNA hairpin ribozyme and effects of Gua8 base variants on the geometry of phosphoryl transfer.,Salter J, Krucinska J, Alam S, Grum-Tokars V, Wedekind JE Biochemistry. 2006 Jan 24;45(3):686-700. PMID:16411744[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Salter J, Krucinska J, Alam S, Grum-Tokars V, Wedekind JE. Water in the active site of an all-RNA hairpin ribozyme and effects of Gua8 base variants on the geometry of phosphoryl transfer. Biochemistry. 2006 Jan 24;45(3):686-700. PMID:16411744 doi:10.1021/bi051887k
|