|
|
Line 3: |
Line 3: |
| <StructureSection load='2prm' size='340' side='right'caption='[[2prm]], [[Resolution|resolution]] 3.00Å' scene=''> | | <StructureSection load='2prm' size='340' side='right'caption='[[2prm]], [[Resolution|resolution]] 3.00Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[2prm]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Human Human]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2PRM OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2PRM FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[2prm]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2PRM OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2PRM FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=FMN:FLAVIN+MONONUCLEOTIDE'>FMN</scene>, <scene name='pdbligand=ORO:OROTIC+ACID'>ORO</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 3Å</td></tr> |
- | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat"><div style='overflow: auto; max-height: 3em;'>[[2prh|2prh]], [[2prl|2prl]], [[1d3g|1d3g]]</div></td></tr>
| + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=FMN:FLAVIN+MONONUCLEOTIDE'>FMN</scene>, <scene name='pdbligand=ORO:OROTIC+ACID'>ORO</scene></td></tr> |
- | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">DHODH ([https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 HUMAN])</td></tr> | + | |
- | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[https://en.wikipedia.org/wiki/Dihydroorotate_dehydrogenase_(quinone) Dihydroorotate dehydrogenase (quinone)], with EC number [https://www.brenda-enzymes.info/php/result_flat.php4?ecno=1.3.5.2 1.3.5.2] </span></td></tr>
| + | |
| <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2prm FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2prm OCA], [https://pdbe.org/2prm PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2prm RCSB], [https://www.ebi.ac.uk/pdbsum/2prm PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2prm ProSAT]</span></td></tr> | | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2prm FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2prm OCA], [https://pdbe.org/2prm PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2prm RCSB], [https://www.ebi.ac.uk/pdbsum/2prm PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2prm ProSAT]</span></td></tr> |
| </table> | | </table> |
| == Disease == | | == Disease == |
- | [[https://www.uniprot.org/uniprot/PYRD_HUMAN PYRD_HUMAN]] Defects in DHODH are the cause of postaxial acrofacial dysostosis (POADS) [MIM:[https://omim.org/entry/263750 263750]]; also known as Miller syndrome. POADS is characterized by severe micrognathia, cleft lip and/or palate, hypoplasia or aplasia of the posterior elements of the limbs, coloboma of the eyelids and supernumerary nipples. POADS is a very rare disorder: only 2 multiplex families, each consisting of 2 affected siblings born to unaffected, nonconsanguineous parents, have been described among a total of around 30 reported cases.<ref>PMID:19915526</ref>
| + | [https://www.uniprot.org/uniprot/PYRD_HUMAN PYRD_HUMAN] Defects in DHODH are the cause of postaxial acrofacial dysostosis (POADS) [MIM:[https://omim.org/entry/263750 263750]; also known as Miller syndrome. POADS is characterized by severe micrognathia, cleft lip and/or palate, hypoplasia or aplasia of the posterior elements of the limbs, coloboma of the eyelids and supernumerary nipples. POADS is a very rare disorder: only 2 multiplex families, each consisting of 2 affected siblings born to unaffected, nonconsanguineous parents, have been described among a total of around 30 reported cases.<ref>PMID:19915526</ref> |
| == Function == | | == Function == |
- | [[https://www.uniprot.org/uniprot/PYRD_HUMAN PYRD_HUMAN]] Catalyzes the conversion of dihydroorotate to orotate with quinone as electron acceptor.
| + | [https://www.uniprot.org/uniprot/PYRD_HUMAN PYRD_HUMAN] Catalyzes the conversion of dihydroorotate to orotate with quinone as electron acceptor. |
| == Evolutionary Conservation == | | == Evolutionary Conservation == |
| [[Image:Consurf_key_small.gif|200px|right]] | | [[Image:Consurf_key_small.gif|200px|right]] |
Line 40: |
Line 38: |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Human]] | + | [[Category: Homo sapiens]] |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
- | [[Category: Al-Karadaghi, S]] | + | [[Category: Al-Karadaghi S]] |
- | [[Category: Dufe, V T]] | + | [[Category: Dufe VT]] |
- | [[Category: Walse, B]] | + | [[Category: Walse B]] |
- | [[Category: Oxidoreductase]]
| + | |
- | [[Category: Protein inhibitor complex]]
| + | |
| Structural highlights
Disease
PYRD_HUMAN Defects in DHODH are the cause of postaxial acrofacial dysostosis (POADS) [MIM:263750; also known as Miller syndrome. POADS is characterized by severe micrognathia, cleft lip and/or palate, hypoplasia or aplasia of the posterior elements of the limbs, coloboma of the eyelids and supernumerary nipples. POADS is a very rare disorder: only 2 multiplex families, each consisting of 2 affected siblings born to unaffected, nonconsanguineous parents, have been described among a total of around 30 reported cases.[1]
Function
PYRD_HUMAN Catalyzes the conversion of dihydroorotate to orotate with quinone as electron acceptor.
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
Inhibitors of dihydroorotate dehydrogenase (DHODH) have been suggested for the treatment of rheumatoid arthritis, psoriasis, autoimmune diseases, Plasmodium, and bacterial and fungal infections. Here we present the structures of N-terminally truncated (residues Met30-Arg396) DHODH in complex with two inhibitors: a brequinar analogue (6) and a novel inhibitor (a fenamic acid derivative) (7), as well as the first structure of the enzyme to be characterized without any bound inhibitor. It is shown that 7 uses the "standard" brequinar binding mode and, in addition, interacts with Tyr356, a residue conserved in most class 2 DHODH proteins. Compared to the inhibitor-free structure, some of the amino acid side chains in the tunnel in which brequinar binds and which was suggested to be the binding site of ubiquinone undergo changes in conformation upon inhibitor binding. Using our data, the loop regions of residues Leu68-Arg72 and Asn212-Leu224, which were disordered in previously studied human DHODH structures, could be built into the electron density. The first of these loops, which is located at the entrance to the inhibitor-binding pocket, shows different conformations in the three structures, suggesting that it may interfere with inhibitor/cofactor binding. The second loop has been suggested to control the access of dihydroorotate to the active site of the enzyme and may be an important player in the enzymatic reaction. These observations provide new insights into the dynamic features of the DHODH reaction and suggest new approaches to the design of inhibitors against DHODH.
The structures of human dihydroorotate dehydrogenase with and without inhibitor reveal conformational flexibility in the inhibitor and substrate binding sites.,Walse B, Dufe VT, Svensson B, Fritzson I, Dahlberg L, Khairoullina A, Wellmar U, Al-Karadaghi S Biochemistry. 2008 Aug 26;47(34):8929-36. Epub 2008 Aug 2. PMID:18672895[2]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Ng SB, Buckingham KJ, Lee C, Bigham AW, Tabor HK, Dent KM, Huff CD, Shannon PT, Jabs EW, Nickerson DA, Shendure J, Bamshad MJ. Exome sequencing identifies the cause of a mendelian disorder. Nat Genet. 2010 Jan;42(1):30-5. doi: 10.1038/ng.499. Epub 2009 Nov 13. PMID:19915526 doi:10.1038/ng.499
- ↑ Walse B, Dufe VT, Svensson B, Fritzson I, Dahlberg L, Khairoullina A, Wellmar U, Al-Karadaghi S. The structures of human dihydroorotate dehydrogenase with and without inhibitor reveal conformational flexibility in the inhibitor and substrate binding sites. Biochemistry. 2008 Aug 26;47(34):8929-36. Epub 2008 Aug 2. PMID:18672895 doi:10.1021/bi8003318
|