|
|
(One intermediate revision not shown.) |
Line 3: |
Line 3: |
| <StructureSection load='5ccc' size='340' side='right'caption='[[5ccc]], [[Resolution|resolution]] 1.50Å' scene=''> | | <StructureSection load='5ccc' size='340' side='right'caption='[[5ccc]], [[Resolution|resolution]] 1.50Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[5ccc]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/"bacillus_coli"_migula_1895 "bacillus coli" migula 1895]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5CCC OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5CCC FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[5ccc]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Escherichia_coli Escherichia coli]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5CCC OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=5CCC FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=DDF:5,10-DIDEAZATETRAHYDROFOLIC+ACID'>DDF</scene>, <scene name='pdbligand=NAP:NADP+NICOTINAMIDE-ADENINE-DINUCLEOTIDE+PHOSPHATE'>NAP</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.5Å</td></tr> |
- | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[5cc9|5cc9]]</td></tr>
| + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=DDF:5,10-DIDEAZATETRAHYDROFOLIC+ACID'>DDF</scene>, <scene name='pdbligand=NAP:NADP+NICOTINAMIDE-ADENINE-DINUCLEOTIDE+PHOSPHATE'>NAP</scene></td></tr> |
- | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">folA ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=562 "Bacillus coli" Migula 1895])</td></tr> | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=5ccc FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5ccc OCA], [https://pdbe.org/5ccc PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=5ccc RCSB], [https://www.ebi.ac.uk/pdbsum/5ccc PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=5ccc ProSAT]</span></td></tr> |
- | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Dihydrofolate_reductase Dihydrofolate reductase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=1.5.1.3 1.5.1.3] </span></td></tr>
| + | |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5ccc FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5ccc OCA], [http://pdbe.org/5ccc PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=5ccc RCSB], [http://www.ebi.ac.uk/pdbsum/5ccc PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=5ccc ProSAT]</span></td></tr> | + | |
| </table> | | </table> |
| == Function == | | == Function == |
- | [[http://www.uniprot.org/uniprot/DYR_ECOL6 DYR_ECOL6]] Key enzyme in folate metabolism. Catalyzes an essential reaction for de novo glycine and purine synthesis, and for DNA precursor synthesis (By similarity). | + | [https://www.uniprot.org/uniprot/DYR_ECOLI DYR_ECOLI] Key enzyme in folate metabolism. Catalyzes an essential reaction for de novo glycine and purine synthesis, and for DNA precursor synthesis. |
| <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
Line 28: |
Line 26: |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Bacillus coli migula 1895]] | + | [[Category: Escherichia coli]] |
- | [[Category: Dihydrofolate reductase]]
| + | |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
- | [[Category: Oyen, D]] | + | [[Category: Oyen D]] |
- | [[Category: Wright, P E]] | + | [[Category: Wright PE]] |
- | [[Category: Folate metabolism]]
| + | |
- | [[Category: Oxidoreductase]]
| + | |
| Structural highlights
Function
DYR_ECOLI Key enzyme in folate metabolism. Catalyzes an essential reaction for de novo glycine and purine synthesis, and for DNA precursor synthesis.
Publication Abstract from PubMed
The enzyme dihydrofolate reductase (DHFR, E) from Escherichia coli is a paradigm for the role of protein dynamics in enzyme catalysis. Previous studies have shown that the enzyme progresses through the kinetic cycle by modulating the dynamic conformational landscape in the presence of substrate dihydrofolate (DHF), product tetrahydrofolate (THF), and cofactor (NADPH or NADP(+)). This study focuses on the quantitative description of the relationship between protein fluctuations and product release, the rate-limiting step of DHFR catalysis. NMR relaxation dispersion measurements of millisecond time scale motions for the E:THF:NADP(+) and E:THF:NADPH complexes of wild-type and the Leu28Phe (L28F) point mutant reveal conformational exchange between an occluded ground state and a low population of a closed state. The backbone structures of the occluded ground states of the wild-type and mutant proteins are very similar, but the rates of exchange with the closed excited states are very different. Integrated analysis of relaxation dispersion data and THF dissociation rates measured by stopped-flow spectroscopy shows that product release can occur by two pathways. The intrinsic pathway consists of spontaneous product dissociation and occurs for all THF-bound complexes of DHFR. The allosteric pathway features cofactor-assisted product release from the closed excited state and is utilized only in the E:THF:NADPH complexes. The L28F mutation alters the partitioning between the pathways and results in increased flux through the intrinsic pathway relative to the wild-type enzyme. This repartitioning could represent a general mechanism to explain changes in product release rates in other E. coli DHFR mutants.
Cofactor-Mediated Conformational Dynamics Promote Product Release From Escherichia coli Dihydrofolate Reductase via an Allosteric Pathway.,Oyen D, Fenwick RB, Stanfield RL, Dyson HJ, Wright PE J Am Chem Soc. 2015 Jul 29;137(29):9459-68. doi: 10.1021/jacs.5b05707. Epub 2015 , Jul 14. PMID:26147643[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Oyen D, Fenwick RB, Stanfield RL, Dyson HJ, Wright PE. Cofactor-Mediated Conformational Dynamics Promote Product Release From Escherichia coli Dihydrofolate Reductase via an Allosteric Pathway. J Am Chem Soc. 2015 Jul 29;137(29):9459-68. doi: 10.1021/jacs.5b05707. Epub 2015 , Jul 14. PMID:26147643 doi:http://dx.doi.org/10.1021/jacs.5b05707
|