|
|
(2 intermediate revisions not shown.) |
Line 1: |
Line 1: |
| | | |
| ==TOG-tubulin binding specificity promotes microtubule dynamics and mitotic spindle formation== | | ==TOG-tubulin binding specificity promotes microtubule dynamics and mitotic spindle formation== |
- | <StructureSection load='5vjc' size='340' side='right' caption='[[5vjc]], [[Resolution|resolution]] 2.00Å' scene=''> | + | <StructureSection load='5vjc' size='340' side='right'caption='[[5vjc]], [[Resolution|resolution]] 2.00Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[5vjc]] is a 2 chain structure. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5VJC OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5VJC FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[5vjc]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Drosophila_melanogaster Drosophila melanogaster]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5VJC OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=5VJC FirstGlance]. <br> |
- | </td></tr><tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5vjc FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5vjc OCA], [http://pdbe.org/5vjc PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=5vjc RCSB], [http://www.ebi.ac.uk/pdbsum/5vjc PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=5vjc ProSAT]</span></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2Å</td></tr> |
| + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=5vjc FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5vjc OCA], [https://pdbe.org/5vjc PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=5vjc RCSB], [https://www.ebi.ac.uk/pdbsum/5vjc PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=5vjc ProSAT]</span></td></tr> |
| </table> | | </table> |
| == Function == | | == Function == |
- | [[http://www.uniprot.org/uniprot/MSPS_DROME MSPS_DROME]] Binds to the plus end of microtubules and regulates microtubule dynamics and microtubule organization. Promotes cytoplasmic microtubule nucleation and elongation. May act as a microtubule antipause factor that rapidly catalyzes the transition from pause to either growth or shrinkage. Involved in mitotic spindle elongation. Involved in the establishment of cell polarity and mitotic spindle orientation in neuroblasts. Required for maintaining the bipolarity of acentrosomal meiotic spindles; the function is dependent on tacc and involves ncd. Involved in oocyte microtubule cytoskeleton organization and bicoid mRNA localization. Seems to be involved in elongation of kinetochore-derived microtubule fibers.<ref>PMID:10477755</ref> <ref>PMID:11433295</ref> <ref>PMID:15530399</ref> <ref>PMID:15775959</ref> <ref>PMID:16303556</ref> <ref>PMID:17889670</ref> <ref>PMID:26953351</ref> <ref>PMID:21965297</ref> | + | [https://www.uniprot.org/uniprot/MSPS_DROME MSPS_DROME] Binds to the plus end of microtubules and regulates microtubule dynamics and microtubule organization. Promotes cytoplasmic microtubule nucleation and elongation. May act as a microtubule antipause factor that rapidly catalyzes the transition from pause to either growth or shrinkage. Involved in mitotic spindle elongation. Involved in the establishment of cell polarity and mitotic spindle orientation in neuroblasts. Required for maintaining the bipolarity of acentrosomal meiotic spindles; the function is dependent on tacc and involves ncd. Involved in oocyte microtubule cytoskeleton organization and bicoid mRNA localization. Seems to be involved in elongation of kinetochore-derived microtubule fibers.<ref>PMID:10477755</ref> <ref>PMID:11433295</ref> <ref>PMID:15530399</ref> <ref>PMID:15775959</ref> <ref>PMID:16303556</ref> <ref>PMID:17889670</ref> <ref>PMID:26953351</ref> <ref>PMID:21965297</ref> |
| + | <div style="background-color:#fffaf0;"> |
| + | == Publication Abstract from PubMed == |
| + | XMAP215, CLASP, and Crescerin use arrayed tubulin-binding tumor overexpressed gene (TOG) domains to modulate microtubule dynamics. We hypothesized that TOGs have distinct architectures and tubulin-binding properties that underlie each family's ability to promote microtubule polymerization or pause. As a model, we investigated the pentameric TOG array of a Drosophila melanogaster XMAP215 member, Msps. We found that Msps TOGs have distinct architectures that bind either free or polymerized tubulin, and that a polarized array drives microtubule polymerization. An engineered TOG1-2-5 array fully supported Msps-dependent microtubule polymerase activity. Requisite for this activity was a TOG5-specific N-terminal HEAT repeat that engaged microtubule lattice-incorporated tubulin. TOG5-microtubule binding maintained mitotic spindle formation as deleting or mutating TOG5 compromised spindle architecture and increased the mitotic index. Mad2 knockdown released the spindle assembly checkpoint triggered when TOG5-microtubule binding was compromised, indicating that TOG5 is essential for spindle function. Our results reveal a TOG5-specific role in mitotic fidelity and support our hypothesis that architecturally distinct TOGs arranged in a sequence-specific order underlie TOG array microtubule regulator activity. |
| + | |
| + | TOG-tubulin binding specificity promotes microtubule dynamics and mitotic spindle formation.,Byrnes AE, Slep KC J Cell Biol. 2017 Jun 5;216(6):1641-1657. doi: 10.1083/jcb.201610090. Epub 2017, May 16. PMID:28512144<ref>PMID:28512144</ref> |
| + | |
| + | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> |
| + | </div> |
| + | <div class="pdbe-citations 5vjc" style="background-color:#fffaf0;"></div> |
| == References == | | == References == |
| <references/> | | <references/> |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Byrnes, A E]] | + | [[Category: Drosophila melanogaster]] |
- | [[Category: Slep, K C]] | + | [[Category: Large Structures]] |
- | [[Category: Cell cycle]] | + | [[Category: Byrnes AE]] |
- | [[Category: Heat repeat]] | + | [[Category: Slep KC]] |
- | [[Category: Tog]]
| + | |
- | [[Category: Tubulin]]
| + | |
| Structural highlights
Function
MSPS_DROME Binds to the plus end of microtubules and regulates microtubule dynamics and microtubule organization. Promotes cytoplasmic microtubule nucleation and elongation. May act as a microtubule antipause factor that rapidly catalyzes the transition from pause to either growth or shrinkage. Involved in mitotic spindle elongation. Involved in the establishment of cell polarity and mitotic spindle orientation in neuroblasts. Required for maintaining the bipolarity of acentrosomal meiotic spindles; the function is dependent on tacc and involves ncd. Involved in oocyte microtubule cytoskeleton organization and bicoid mRNA localization. Seems to be involved in elongation of kinetochore-derived microtubule fibers.[1] [2] [3] [4] [5] [6] [7] [8]
Publication Abstract from PubMed
XMAP215, CLASP, and Crescerin use arrayed tubulin-binding tumor overexpressed gene (TOG) domains to modulate microtubule dynamics. We hypothesized that TOGs have distinct architectures and tubulin-binding properties that underlie each family's ability to promote microtubule polymerization or pause. As a model, we investigated the pentameric TOG array of a Drosophila melanogaster XMAP215 member, Msps. We found that Msps TOGs have distinct architectures that bind either free or polymerized tubulin, and that a polarized array drives microtubule polymerization. An engineered TOG1-2-5 array fully supported Msps-dependent microtubule polymerase activity. Requisite for this activity was a TOG5-specific N-terminal HEAT repeat that engaged microtubule lattice-incorporated tubulin. TOG5-microtubule binding maintained mitotic spindle formation as deleting or mutating TOG5 compromised spindle architecture and increased the mitotic index. Mad2 knockdown released the spindle assembly checkpoint triggered when TOG5-microtubule binding was compromised, indicating that TOG5 is essential for spindle function. Our results reveal a TOG5-specific role in mitotic fidelity and support our hypothesis that architecturally distinct TOGs arranged in a sequence-specific order underlie TOG array microtubule regulator activity.
TOG-tubulin binding specificity promotes microtubule dynamics and mitotic spindle formation.,Byrnes AE, Slep KC J Cell Biol. 2017 Jun 5;216(6):1641-1657. doi: 10.1083/jcb.201610090. Epub 2017, May 16. PMID:28512144[9]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
- ↑ Cullen CF, Deak P, Glover DM, Ohkura H. mini spindles: A gene encoding a conserved microtubule-associated protein required for the integrity of the mitotic spindle in Drosophila. J Cell Biol. 1999 Sep 6;146(5):1005-18. PMID:10477755
- ↑ Cullen CF, Ohkura H. Msps protein is localized to acentrosomal poles to ensure bipolarity of Drosophila meiotic spindles. Nat Cell Biol. 2001 Jul;3(7):637-42. PMID:11433295 doi:http://dx.doi.org/10.1038/35083025
- ↑ Moon W, Hazelrigg T. The Drosophila microtubule-associated protein mini spindles is required for cytoplasmic microtubules in oogenesis. Curr Biol. 2004 Nov 9;14(21):1957-61. PMID:15530399 doi:http://dx.doi.org/10.1016/j.cub.2004.10.023
- ↑ Brittle AL, Ohkura H. Mini spindles, the XMAP215 homologue, suppresses pausing of interphase microtubules in Drosophila. EMBO J. 2005 Apr 6;24(7):1387-96. Epub 2005 Mar 17. PMID:15775959 doi:http://dx.doi.org/10.1038/sj.emboj.7600629
- ↑ Goshima G, Wollman R, Stuurman N, Scholey JM, Vale RD. Length control of the metaphase spindle. Curr Biol. 2005 Nov 22;15(22):1979-88. PMID:16303556 doi:10.1016/j.cub.2005.09.054
- ↑ Slep KC, Vale RD. Structural basis of microtubule plus end tracking by XMAP215, CLIP-170, and EB1. Mol Cell. 2007 Sep 21;27(6):976-91. PMID:17889670 doi:10.1016/j.molcel.2007.07.023
- ↑ Chen K, Koe CT, Xing ZB, Tian X, Rossi F, Wang C, Tang Q, Zong W, Hong WJ, Taneja R, Yu F, Gonzalez C, Wu C, Endow S, Wang H. Arl2- and Msps-dependent microtubule growth governs asymmetric division. J Cell Biol. 2016 Mar 14;212(6):661-76. doi: 10.1083/jcb.201503047. Epub 2016 Mar, 7. PMID:26953351 doi:http://dx.doi.org/10.1083/jcb.201503047
- ↑ Currie JD, Stewman S, Schimizzi G, Slep KC, Ma A, Rogers SL. The microtubule lattice and plus-end association of Drosophila Mini spindles is spatially regulated to fine-tune microtubule dynamics. Mol Biol Cell. 2011 Nov;22(22):4343-61. doi: 10.1091/mbc.E11-06-0520. Epub 2011, Sep 30. PMID:21965297 doi:http://dx.doi.org/10.1091/mbc.E11-06-0520
- ↑ Byrnes AE, Slep KC. TOG-tubulin binding specificity promotes microtubule dynamics and mitotic spindle formation. J Cell Biol. 2017 Jun 5;216(6):1641-1657. doi: 10.1083/jcb.201610090. Epub 2017, May 16. PMID:28512144 doi:http://dx.doi.org/10.1083/jcb.201610090
|