2dcy

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Current revision (08:25, 25 October 2023) (edit) (undo)
 
(14 intermediate revisions not shown.)
Line 1: Line 1:
-
[[Image:2dcy.gif|left|200px]]<br /><applet load="2dcy" size="350" color="white" frame="true" align="right" spinBox="true"
 
-
caption="2dcy, resolution 1.40&Aring;" />
 
-
'''Crystal structure of Bacillus subtilis family-11 xylanase'''<br />
 
-
==Overview==
+
==Crystal structure of Bacillus subtilis family-11 xylanase==
 +
<StructureSection load='2dcy' size='340' side='right'caption='[[2dcy]], [[Resolution|resolution]] 1.40&Aring;' scene=''>
 +
== Structural highlights ==
 +
<table><tr><td colspan='2'>[[2dcy]] is a 5 chain structure with sequence from [https://en.wikipedia.org/wiki/Bacillus_subtilis Bacillus subtilis]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2DCY OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2DCY FirstGlance]. <br>
 +
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.4&#8491;</td></tr>
 +
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=DIO:1,4-DIETHYLENE+DIOXIDE'>DIO</scene>, <scene name='pdbligand=TAR:D(-)-TARTARIC+ACID'>TAR</scene>, <scene name='pdbligand=TLA:L(+)-TARTARIC+ACID'>TLA</scene></td></tr>
 +
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2dcy FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2dcy OCA], [https://pdbe.org/2dcy PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2dcy RCSB], [https://www.ebi.ac.uk/pdbsum/2dcy PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2dcy ProSAT]</span></td></tr>
 +
</table>
 +
== Function ==
 +
[https://www.uniprot.org/uniprot/XYNA_BACSU XYNA_BACSU]
 +
== Evolutionary Conservation ==
 +
[[Image:Consurf_key_small.gif|200px|right]]
 +
Check<jmol>
 +
<jmolCheckbox>
 +
<scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/dc/2dcy_consurf.spt"</scriptWhenChecked>
 +
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
 +
<text>to colour the structure by Evolutionary Conservation</text>
 +
</jmolCheckbox>
 +
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=2dcy ConSurf].
 +
<div style="clear:both"></div>
 +
<div style="background-color:#fffaf0;">
 +
== Publication Abstract from PubMed ==
We used directed evolution to enhance the thermostability of glycosyl hydrolase family-11 xylanase from Bacillus subtilis. By combining random point mutagenesis, saturation mutagenesis, and DNA shuffling, a thermostable variant, Xyl(st), was identified which contained three amino acid substitutions: Q7H, N8F, and S179C. The half-inactivation temperature (the midpoint of the melting curves) for the Xyl(st) variant compared with the wild-type enzyme after incubation for 10 min was elevated from 58 to 68 degrees C. At 60 degrees C the wild-type enzyme was inactivated within 5 min, but Xyl(st) retained full activity for at least 2 h. The stabilization was accompanied by evidence of thermophilicity; that is, an increase in the optimal reaction temperature from 55 to 65 degrees C and lower activity at low temperatures and higher activity at higher temperatures relative to wild type. To elucidate the mechanism of thermal stabilization, three-dimensional structures were determined for the wild-type and Xyl(st) enzymes. A cavity was identified around Gln-7/Asn-8 in wild type that was filled with bulky, hydrophobic residues in Xyl(st). This site was not identified by previous approaches, but directed evolution identified the region as a weak point. Formation of an intermolecular disulfide bridge via Cys-179 was observed between monomers in Xyl(st). However, the stability was essentially the same in the presence and absence of a reducing agent, indicating that the increased hydrophobicity around the Cys-179 accounted for the stability.
We used directed evolution to enhance the thermostability of glycosyl hydrolase family-11 xylanase from Bacillus subtilis. By combining random point mutagenesis, saturation mutagenesis, and DNA shuffling, a thermostable variant, Xyl(st), was identified which contained three amino acid substitutions: Q7H, N8F, and S179C. The half-inactivation temperature (the midpoint of the melting curves) for the Xyl(st) variant compared with the wild-type enzyme after incubation for 10 min was elevated from 58 to 68 degrees C. At 60 degrees C the wild-type enzyme was inactivated within 5 min, but Xyl(st) retained full activity for at least 2 h. The stabilization was accompanied by evidence of thermophilicity; that is, an increase in the optimal reaction temperature from 55 to 65 degrees C and lower activity at low temperatures and higher activity at higher temperatures relative to wild type. To elucidate the mechanism of thermal stabilization, three-dimensional structures were determined for the wild-type and Xyl(st) enzymes. A cavity was identified around Gln-7/Asn-8 in wild type that was filled with bulky, hydrophobic residues in Xyl(st). This site was not identified by previous approaches, but directed evolution identified the region as a weak point. Formation of an intermolecular disulfide bridge via Cys-179 was observed between monomers in Xyl(st). However, the stability was essentially the same in the presence and absence of a reducing agent, indicating that the increased hydrophobicity around the Cys-179 accounted for the stability.
-
==About this Structure==
+
Thermal stabilization of Bacillus subtilis family-11 xylanase by directed evolution.,Miyazaki K, Takenouchi M, Kondo H, Noro N, Suzuki M, Tsuda S J Biol Chem. 2006 Apr 14;281(15):10236-42. Epub 2006 Feb 8. PMID:16467302<ref>PMID:16467302</ref>
-
2DCY is a [http://en.wikipedia.org/wiki/Single_protein Single protein] structure of sequence from [http://en.wikipedia.org/wiki/Bacillus_subtilis Bacillus subtilis] with <scene name='pdbligand=TAR:'>TAR</scene> and <scene name='pdbligand=DIO:'>DIO</scene> as [http://en.wikipedia.org/wiki/ligands ligands]. Active as [http://en.wikipedia.org/wiki/Endo-1,4-beta-xylanase Endo-1,4-beta-xylanase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.2.1.8 3.2.1.8] Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2DCY OCA].
+
-
==Reference==
+
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
-
Thermal stabilization of Bacillus subtilis family-11 xylanase by directed evolution., Miyazaki K, Takenouchi M, Kondo H, Noro N, Suzuki M, Tsuda S, J Biol Chem. 2006 Apr 14;281(15):10236-42. Epub 2006 Feb 8. PMID:[http://ispc.weizmann.ac.il//pmbin/getpm?pmid=16467302 16467302]
+
</div>
 +
<div class="pdbe-citations 2dcy" style="background-color:#fffaf0;"></div>
 +
== References ==
 +
<references/>
 +
__TOC__
 +
</StructureSection>
[[Category: Bacillus subtilis]]
[[Category: Bacillus subtilis]]
-
[[Category: Endo-1,4-beta-xylanase]]
+
[[Category: Large Structures]]
-
[[Category: Single protein]]
+
[[Category: Kondo H]]
-
[[Category: Kondo, H.]]
+
[[Category: Miyazaki K]]
-
[[Category: Miyazaki, K.]]
+
[[Category: Noro N]]
-
[[Category: Noro, N.]]
+
[[Category: Suzuki M]]
-
[[Category: Suzuki, M.]]
+
[[Category: Takenouchi M]]
-
[[Category: Takenouchi, M.]]
+
[[Category: Tsuda S]]
-
[[Category: Tsuda, S.]]
+
-
[[Category: DIO]]
+
-
[[Category: TAR]]
+
-
[[Category: all beta]]
+
-
 
+
-
''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Thu Feb 21 16:57:34 2008''
+

Current revision

Crystal structure of Bacillus subtilis family-11 xylanase

PDB ID 2dcy

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools