3a4z
From Proteopedia
(Difference between revisions)
(7 intermediate revisions not shown.) | |||
Line 1: | Line 1: | ||
- | [[Image:3a4z.png|left|200px]] | ||
- | + | ==Structure of cytochrome P450 Vdh mutant (Vdh-K1) obtained by directed evolution== | |
+ | <StructureSection load='3a4z' size='340' side='right'caption='[[3a4z]], [[Resolution|resolution]] 2.20Å' scene=''> | ||
+ | == Structural highlights == | ||
+ | <table><tr><td colspan='2'>[[3a4z]] is a 5 chain structure with sequence from [https://en.wikipedia.org/wiki/Pseudonocardia_autotrophica Pseudonocardia autotrophica]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3A4Z OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3A4Z FirstGlance]. <br> | ||
+ | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.2Å</td></tr> | ||
+ | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=ACT:ACETATE+ION'>ACT</scene>, <scene name='pdbligand=CA:CALCIUM+ION'>CA</scene>, <scene name='pdbligand=GOL:GLYCEROL'>GOL</scene>, <scene name='pdbligand=HEM:PROTOPORPHYRIN+IX+CONTAINING+FE'>HEM</scene></td></tr> | ||
+ | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3a4z FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3a4z OCA], [https://pdbe.org/3a4z PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3a4z RCSB], [https://www.ebi.ac.uk/pdbsum/3a4z PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3a4z ProSAT]</span></td></tr> | ||
+ | </table> | ||
+ | == Function == | ||
+ | [https://www.uniprot.org/uniprot/CPVDH_PSEAH CPVDH_PSEAH] | ||
+ | == Evolutionary Conservation == | ||
+ | [[Image:Consurf_key_small.gif|200px|right]] | ||
+ | Check<jmol> | ||
+ | <jmolCheckbox> | ||
+ | <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/a4/3a4z_consurf.spt"</scriptWhenChecked> | ||
+ | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | ||
+ | <text>to colour the structure by Evolutionary Conservation</text> | ||
+ | </jmolCheckbox> | ||
+ | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=3a4z ConSurf]. | ||
+ | <div style="clear:both"></div> | ||
+ | <div style="background-color:#fffaf0;"> | ||
+ | == Publication Abstract from PubMed == | ||
+ | Vitamin D(3) hydroxylase (Vdh) isolated from actinomycete Pseudonocardia autotrophica is a cytochrome P450 (CYP) responsible for the biocatalytic conversion of vitamin D(3) (VD(3)) to 1alpha,25-dihydroxyvitamin D(3) (1alpha,25(OH)(2)VD(3)) by P. autotrophica. Although its biological function is unclear, Vdh is capable of catalyzing the two-step hydroxylation of VD(3), i.e. the conversion of VD(3) to 25-hydroxyvitamin D(3) (25(OH)VD(3)) and then of 25(OH)VD(3) to 1alpha,25(OH)(2)VD(3), a hormonal form of VD(3). Here we describe the crystal structures of wild-type Vdh (Vdh-WT) in the substrate-free form and of the highly active quadruple mutant (Vdh-K1) generated by directed evolution in the substrate-free, VD(3)-bound, and 25(OH)VD(3)-bound forms. Vdh-WT exhibits an open conformation with the distal heme pocket exposed to the solvent both in the presence and absence of a substrate, whereas Vdh-K1 exhibits a closed conformation in both the substrate-free and substrate-bound forms. The results suggest that the conformational equilibrium was largely shifted toward the closed conformation by four amino acid substitutions scattered throughout the molecule. The substrate-bound structure of Vdh-K1 accommodates both VD(3) and 25(OH)VD(3) but in an anti-parallel orientation. The occurrence of the two secosteroid binding modes accounts for the regioselective sequential VD(3) hydroxylation activities. Moreover, these structures determined before and after directed evolution, together with biochemical and spectroscopic data, provide insights into how directed evolution has worked for significant enhancement of both the VD(3) 25-hydroxylase and 25(OH)VD(3) 1alpha-hydroxylase activities. | ||
- | + | Structural evidence for enhancement of sequential vitamin D3 hydroxylation activities by directed evolution of cytochrome P450 vitamin D3 hydroxylase.,Yasutake Y, Fujii Y, Nishioka T, Cheon WK, Arisawa A, Tamura T J Biol Chem. 2010 Oct 8;285(41):31193-201. Epub 2010 Jul 27. PMID:20667833<ref>PMID:20667833</ref> | |
- | + | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |
- | + | </div> | |
- | + | <div class="pdbe-citations 3a4z" style="background-color:#fffaf0;"></div> | |
- | + | ||
==See Also== | ==See Also== | ||
- | *[[Cytochrome P450|Cytochrome P450]] | + | *[[Cytochrome P450 3D structures|Cytochrome P450 3D structures]] |
- | + | == References == | |
- | == | + | <references/> |
- | < | + | __TOC__ |
+ | </StructureSection> | ||
+ | [[Category: Large Structures]] | ||
[[Category: Pseudonocardia autotrophica]] | [[Category: Pseudonocardia autotrophica]] | ||
- | [[Category: Arisawa | + | [[Category: Arisawa A]] |
- | [[Category: Cheon | + | [[Category: Cheon WK]] |
- | [[Category: Fujii | + | [[Category: Fujii Y]] |
- | [[Category: Tamura | + | [[Category: Tamura T]] |
- | [[Category: Yasutake | + | [[Category: Yasutake Y]] |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + |
Current revision
Structure of cytochrome P450 Vdh mutant (Vdh-K1) obtained by directed evolution
|