124d
From Proteopedia
(Difference between revisions)
(9 intermediate revisions not shown.) | |||
Line 1: | Line 1: | ||
- | [[Image:124d.jpg|left|200px]] | ||
- | + | ==STRUCTURE OF A DNA:RNA HYBRID DUPLEX: WHY RNASE H DOES NOT CLEAVE PURE RNA== | |
- | + | <StructureSection load='124d' size='340' side='right'caption='[[124d]]' scene=''> | |
- | + | == Structural highlights == | |
- | + | <table><tr><td colspan='2'>[[124d]] is a 2 chain structure. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=124D OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=124D FirstGlance]. <br> | |
- | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">Solution NMR</td></tr> | |
- | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=124d FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=124d OCA], [https://pdbe.org/124d PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=124d RCSB], [https://www.ebi.ac.uk/pdbsum/124d PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=124d ProSAT]</span></td></tr> | |
- | + | </table> | |
- | + | <div style="background-color:#fffaf0;"> | |
- | + | == Publication Abstract from PubMed == | |
- | + | ||
- | + | ||
- | == | + | |
The solution structure of the DNA:RNA hybrid duplex d(GTCACATG):r(caugugac) has been determined by means of two-dimensional nuclear Overhauser effect (2D-NOE) spectra, restrained molecular dynamics and full-relaxation matrix stimulation of the 2D-NOE spectra. The DNA:RNA hybrid duplex assumes neither an A-form nor a B-form structure in solution, but an intermediate heteromerous duplex structure. The sugars of the RNA strand have a normal N-type C3'-endo conformation, but the DNA strand sugars have neither N-type nor S-type conformations; instead, they have an unexpected intermediate O4'-endo conformation. The negative x-displacement, as well as the small rise and positive inclination of the base-pairs, resembles A-form morphology but the minor groove width is intermediate between that of A-form and B-form duplexes. Both the DNA and RNA strands show prominent sequence-dependent variations in their helical parameters. Combined analysis of NOE and J-coupling data indicates that the DNA sugars are not in a dynamical two-state equilibrium. The detailed three-dimensional structure of this DNA:RNA hybrid molecule leads to a proposed model for its interaction with RNase H. Several specific structural features of the enzyme complexed with the hybrid duplex appear to explain the mechanism whereby RNase H discriminates between DNA:RNA hybrid duplexes and pure RNA:RNA duplexes. | The solution structure of the DNA:RNA hybrid duplex d(GTCACATG):r(caugugac) has been determined by means of two-dimensional nuclear Overhauser effect (2D-NOE) spectra, restrained molecular dynamics and full-relaxation matrix stimulation of the 2D-NOE spectra. The DNA:RNA hybrid duplex assumes neither an A-form nor a B-form structure in solution, but an intermediate heteromerous duplex structure. The sugars of the RNA strand have a normal N-type C3'-endo conformation, but the DNA strand sugars have neither N-type nor S-type conformations; instead, they have an unexpected intermediate O4'-endo conformation. The negative x-displacement, as well as the small rise and positive inclination of the base-pairs, resembles A-form morphology but the minor groove width is intermediate between that of A-form and B-form duplexes. Both the DNA and RNA strands show prominent sequence-dependent variations in their helical parameters. Combined analysis of NOE and J-coupling data indicates that the DNA sugars are not in a dynamical two-state equilibrium. The detailed three-dimensional structure of this DNA:RNA hybrid molecule leads to a proposed model for its interaction with RNase H. Several specific structural features of the enzyme complexed with the hybrid duplex appear to explain the mechanism whereby RNase H discriminates between DNA:RNA hybrid duplexes and pure RNA:RNA duplexes. | ||
- | + | Structure of a DNA:RNA hybrid duplex. Why RNase H does not cleave pure RNA.,Fedoroff OYu, Salazar M, Reid BR J Mol Biol. 1993 Oct 5;233(3):509-23. PMID:8411159<ref>PMID:8411159</ref> | |
- | + | ||
- | + | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |
- | + | </div> | |
- | [[Category: | + | <div class="pdbe-citations 124d" style="background-color:#fffaf0;"></div> |
- | [[Category: | + | == References == |
- | [[Category: | + | <references/> |
- | [[Category: | + | __TOC__ |
- | + | </StructureSection> | |
- | + | [[Category: Large Structures]] | |
+ | [[Category: Fedoroff OY]] | ||
+ | [[Category: Reid BR]] | ||
+ | [[Category: Salazar M]] |
Current revision
STRUCTURE OF A DNA:RNA HYBRID DUPLEX: WHY RNASE H DOES NOT CLEAVE PURE RNA
|