1co1
From Proteopedia
(Difference between revisions)
m (Protected "1co1" [edit=sysop:move=sysop]) |
|||
(8 intermediate revisions not shown.) | |||
Line 1: | Line 1: | ||
- | [[Image:1co1.png|left|200px]] | ||
- | + | ==FOLD OF THE CBFA== | |
+ | <StructureSection load='1co1' size='340' side='right'caption='[[1co1]]' scene=''> | ||
+ | == Structural highlights == | ||
+ | <table><tr><td colspan='2'>[[1co1]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1CO1 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1CO1 FirstGlance]. <br> | ||
+ | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">Solution NMR</td></tr> | ||
+ | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1co1 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1co1 OCA], [https://pdbe.org/1co1 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1co1 RCSB], [https://www.ebi.ac.uk/pdbsum/1co1 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1co1 ProSAT]</span></td></tr> | ||
+ | </table> | ||
+ | == Disease == | ||
+ | [https://www.uniprot.org/uniprot/RUNX1_HUMAN RUNX1_HUMAN] Note=A chromosomal aberration involving RUNX1/AML1 is a cause of M2 type acute myeloid leukemia (AML-M2). Translocation t(8;21)(q22;q22) with RUNX1T1.<ref>PMID:1423235</ref> <ref>PMID:8353289</ref> <ref>PMID:8334990</ref> <ref>PMID:7919324</ref> <ref>PMID:7541640</ref> Note=A chromosomal aberration involving RUNX1/AML1 is a cause of therapy-related myelodysplastic syndrome (T-MDS). Translocation t(3;21)(q26;q22) with EAP or MECOM. Note=A chromosomal aberration involving RUNX1/AML1 is a cause of chronic myelogenous leukemia (CML). Translocation t(3;21)(q26;q22) with EAP or MECOM. Note=A chromosomal aberration involving RUNX1/AML1 is found in childhood acute lymphoblastic leukemia (ALL). Translocation t(12;21)(p13;q22) with TEL. The translocation fuses the 3'-end of TEL to the alternate 5'-exon of AML-1H. Note=A chromosomal aberration involving RUNX1 is found in acute leukemia. Translocation t(11,21)(q13;q22) that forms a MACROD1-RUNX1 fusion protein. Defects in RUNX1 are the cause of familial platelet disorder with associated myeloid malignancy (FPDMM) [MIM:[https://omim.org/entry/601399 601399]. FPDMM is an autosomal dominant disease characterized by qualitative and quantitative platelet defects, and propensity to develop acute myelogenous leukemia.<ref>PMID:10508512</ref> Note=A chromosomal aberration involving RUNX1/AML1 is found in therapy-related myeloid malignancies. Translocation t(16;21)(q24;q22) that forms a RUNX1-CBFA2T3 fusion protein. Note=A chromosomal aberration involving RUNX1/AML1 is a cause of chronic myelomonocytic leukemia. Inversion inv(21)(q21;q22) with USP16. | ||
+ | == Function == | ||
+ | [https://www.uniprot.org/uniprot/RUNX1_HUMAN RUNX1_HUMAN] CBF binds to the core site, 5'-PYGPYGGT-3', of a number of enhancers and promoters, including murine leukemia virus, polyomavirus enhancer, T-cell receptor enhancers, LCK, IL-3 and GM-CSF promoters. The alpha subunit binds DNA and appears to have a role in the development of normal hematopoiesis. Isoform AML-1L interferes with the transactivation activity of RUNX1. Acts synergistically with ELF4 to transactivate the IL-3 promoter and with ELF2 to transactivate the mouse BLK promoter. Inhibits KAT6B-dependent transcriptional activation.<ref>PMID:10207087</ref> <ref>PMID:11965546</ref> <ref>PMID:14970218</ref> <ref>PMID:17431401</ref> | ||
+ | == Evolutionary Conservation == | ||
+ | [[Image:Consurf_key_small.gif|200px|right]] | ||
+ | Check<jmol> | ||
+ | <jmolCheckbox> | ||
+ | <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/co/1co1_consurf.spt"</scriptWhenChecked> | ||
+ | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | ||
+ | <text>to colour the structure by Evolutionary Conservation</text> | ||
+ | </jmolCheckbox> | ||
+ | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1co1 ConSurf]. | ||
+ | <div style="clear:both"></div> | ||
+ | <div style="background-color:#fffaf0;"> | ||
+ | == Publication Abstract from PubMed == | ||
+ | BACKGROUND: CBFA is the DNA-binding subunit of the transcription factor complex called core binding factor, or CBF. Knockout of the Cbfa2 gene in mice leads to embryonic lethality and a profound block in hematopoietic development. Chromosomal disruptions of the human CBFA gene are associated with a large percentage of human leukemias. RESULTS: Utilizing nuclear magnetic resonance spectroscopy we have determined the three-dimensional fold of the CBFA Runt domain in its DNA-bound state, showing that it is an s-type immunoglobulin (Ig) fold. DNA binding by the Runt domain is shown to be mediated by loop regions located at both ends of the Runt domain Ig fold. A putative site for CBFB binding has been identified; the spatial location of this site provides a rationale for the ability of CBFB to modulate the affinity of the Runt domain for DNA. CONCLUSIONS: Structural comparisons demonstrate that the s-type Ig fold found in the Runt domain is conserved in the Ig folds found in the DNA-binding domains of NF-kappaB, NFAT, p53, STAT-1, and the T-domain. Thus, these proteins form a family of structurally and functionally related DNA-binding domains. Unlike the other members of this family, the Runt domain utilizes loops at both ends of the Ig fold for DNA recognition. | ||
- | + | The Ig fold of the core binding factor alpha Runt domain is a member of a family of structurally and functionally related Ig-fold DNA-binding domains.,Berardi MJ, Sun C, Zehr M, Abildgaard F, Peng J, Speck NA, Bushweller JH Structure. 1999 Oct 15;7(10):1247-56. PMID:10545320<ref>PMID:10545320</ref> | |
- | + | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |
+ | </div> | ||
+ | <div class="pdbe-citations 1co1" style="background-color:#fffaf0;"></div> | ||
- | == | + | ==See Also== |
- | [[ | + | *[[Core-binding factor|Core-binding factor]] |
- | + | == References == | |
- | == | + | <references/> |
- | < | + | __TOC__ |
+ | </StructureSection> | ||
[[Category: Homo sapiens]] | [[Category: Homo sapiens]] | ||
- | [[Category: | + | [[Category: Large Structures]] |
- | [[Category: | + | [[Category: Berardi MJ]] |
- | [[Category: | + | [[Category: Bushweller JH]] |
- | + |
Current revision
FOLD OF THE CBFA
|