1goc
From Proteopedia
(Difference between revisions)
(3 intermediate revisions not shown.) | |||
Line 1: | Line 1: | ||
+ | |||
==COOPERATIVE STABILIZATION OF ESCHERICHIA COLI RIBONUCLEASE HI BY INSERTION OF GLY-80B AND GLY-77-> ALA SUBSTITUTION== | ==COOPERATIVE STABILIZATION OF ESCHERICHIA COLI RIBONUCLEASE HI BY INSERTION OF GLY-80B AND GLY-77-> ALA SUBSTITUTION== | ||
- | <StructureSection load='1goc' size='340' side='right' caption='[[1goc]], [[Resolution|resolution]] 2.00Å' scene=''> | + | <StructureSection load='1goc' size='340' side='right'caption='[[1goc]], [[Resolution|resolution]] 2.00Å' scene=''> |
== Structural highlights == | == Structural highlights == | ||
- | <table><tr><td colspan='2'>[[1goc]] is a 1 chain structure with sequence from [ | + | <table><tr><td colspan='2'>[[1goc]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Escherichia_coli Escherichia coli]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1GOC OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1GOC FirstGlance]. <br> |
- | </td></tr><tr id=' | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2Å</td></tr> |
- | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1goc FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1goc OCA], [https://pdbe.org/1goc PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1goc RCSB], [https://www.ebi.ac.uk/pdbsum/1goc PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1goc ProSAT]</span></td></tr> | |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[ | + | |
</table> | </table> | ||
== Function == | == Function == | ||
- | [ | + | [https://www.uniprot.org/uniprot/RNH_ECOLI RNH_ECOLI] Endonuclease that specifically degrades the RNA of RNA-DNA hybrids. RNase H participates in DNA replication; it helps to specify the origin of genomic replication by suppressing initiation at origins other than the oriC locus; along with the 5'-3' exonuclease of pol1, it removes RNA primers from the Okazaki fragments of lagging strand synthesis; and it defines the origin of replication for ColE1-type plasmids by specific cleavage of an RNA preprimer.[HAMAP-Rule:MF_00042] |
== Evolutionary Conservation == | == Evolutionary Conservation == | ||
[[Image:Consurf_key_small.gif|200px|right]] | [[Image:Consurf_key_small.gif|200px|right]] | ||
Check<jmol> | Check<jmol> | ||
<jmolCheckbox> | <jmolCheckbox> | ||
- | <scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/go/1goc_consurf.spt"</scriptWhenChecked> | + | <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/go/1goc_consurf.spt"</scriptWhenChecked> |
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | ||
<text>to colour the structure by Evolutionary Conservation</text> | <text>to colour the structure by Evolutionary Conservation</text> | ||
Line 19: | Line 19: | ||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1goc ConSurf]. | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1goc ConSurf]. | ||
<div style="clear:both"></div> | <div style="clear:both"></div> | ||
- | <div style="background-color:#fffaf0;"> | ||
- | == Publication Abstract from PubMed == | ||
- | The insertion of a Gly residue (designated as Gly-80b) between the C-cap of the alpha II-helix (Gln-80) and the N-cap of the alpha III-helix (Trp-81) in Escherichia coli ribonuclease HI enhances the protein stability by 0.4 kcal/mol in delta G (Kimura, S., Nakamura, H., Hashimoto, T., Oobatake, M., & Kanaya, S. (1992) J. Biol. Chem. 267, 21535-21542). Another mutation within the alpha II-helix, Gly-77-->Ala, reduces the stability by 0.9 kcal/mol. Simultaneous introduction of these mutations enhances the stability by 0.8 kcal/mol, indicating that the effects of these mutations are cooperative and not simply independent. We determined the crystal structures of these three mutant proteins (G80b-, A77-, and A77/G80b-RNase H) to investigate this cooperative mechanism of the protein stabilization. The structures revealed that the inserted Gly-80b assumes a left-handed helical conformation in both the G80b- and the A77/G80b-RNase H. This inserted glycine residue allows the formation of a "paperclip", which is a common motif at the C-termini of alpha-helices. Accompanying the formation of the paperclip motif, two intrahelical hydrogen bonds are formed between the backbone atoms (O78-N80b and O80b-N84). The stabilization caused by the insertion of Gly-80b can be ascribed to the formation of these hydrogen bonds. The Gly-77-->Ala substitution destabilizes the protein due to the deformed packing interactions in the hydrophobic core around Ala-77 and the stress in the wedged indole ring of Trp-81. These effects are alleviated by the insertion of Gly-80b, which relaxes the backbone structure.(ABSTRACT TRUNCATED AT 250 WORDS) | ||
- | |||
- | Cooperative stabilization of Escherichia coli ribonuclease HI by insertion of Gly-80b and Gly-77-->Ala substitution.,Ishikawa K, Nakamura H, Morikawa K, Kimura S, Kanaya S Biochemistry. 1993 Jul 20;32(28):7136-42. PMID:8393706<ref>PMID:8393706</ref> | ||
- | |||
- | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | ||
- | </div> | ||
- | <div class="pdbe-citations 1goc" style="background-color:#fffaf0;"></div> | ||
==See Also== | ==See Also== | ||
- | *[[Ribonuclease|Ribonuclease]] | + | *[[Ribonuclease 3D structures|Ribonuclease 3D structures]] |
- | + | ||
- | + | ||
- | + | ||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> | ||
- | [[Category: | + | [[Category: Escherichia coli]] |
- | [[Category: | + | [[Category: Large Structures]] |
- | [[Category: Ishikawa | + | [[Category: Ishikawa K]] |
- | [[Category: Kanaya | + | [[Category: Kanaya S]] |
- | [[Category: Kimura | + | [[Category: Kimura S]] |
- | [[Category: Morikawa | + | [[Category: Morikawa K]] |
- | [[Category: Nakamura | + | [[Category: Nakamura H]] |
Current revision
COOPERATIVE STABILIZATION OF ESCHERICHIA COLI RIBONUCLEASE HI BY INSERTION OF GLY-80B AND GLY-77-> ALA SUBSTITUTION
|