4tot
From Proteopedia
(Difference between revisions)
Line 10: | Line 10: | ||
== Function == | == Function == | ||
[https://www.uniprot.org/uniprot/PPIF_RAT PPIF_RAT] PPIases accelerate the folding of proteins. It catalyzes the cis-trans isomerization of proline imidic peptide bonds in oligopeptides. Involved in regulation of the mitochondrial permeability transition pore (mPTP). It is proposed that its association with the mPTP is masking a binding site for inhibiting inorganic phosphate (Pi) and promotes the open probability of the mPTP leading to apoptosis or necrosis; the requirement of the PPIase activity for this function is debated. In cooperation with mitochondrial TP53 is involved in activating oxidative stress-induced necrosis. Involved in modulation of mitochondrial membrane F(1)F(0) ATP synthase activity and regulation of mitochondrial matrix adenine nucleotide levels. Has anti-apoptotic activity independently of mPTP and in cooperation with BCL2 inhibits cytochrome c-dependent apoptosis.<ref>PMID:8567677</ref> <ref>PMID:9309684</ref> <ref>PMID:9820802</ref> | [https://www.uniprot.org/uniprot/PPIF_RAT PPIF_RAT] PPIases accelerate the folding of proteins. It catalyzes the cis-trans isomerization of proline imidic peptide bonds in oligopeptides. Involved in regulation of the mitochondrial permeability transition pore (mPTP). It is proposed that its association with the mPTP is masking a binding site for inhibiting inorganic phosphate (Pi) and promotes the open probability of the mPTP leading to apoptosis or necrosis; the requirement of the PPIase activity for this function is debated. In cooperation with mitochondrial TP53 is involved in activating oxidative stress-induced necrosis. Involved in modulation of mitochondrial membrane F(1)F(0) ATP synthase activity and regulation of mitochondrial matrix adenine nucleotide levels. Has anti-apoptotic activity independently of mPTP and in cooperation with BCL2 inhibits cytochrome c-dependent apoptosis.<ref>PMID:8567677</ref> <ref>PMID:9309684</ref> <ref>PMID:9820802</ref> | ||
- | <div style="background-color:#fffaf0;"> | ||
- | == Publication Abstract from PubMed == | ||
- | Nonimmunosuppressive cyclophilin inhibitors have demonstrated efficacy for the treatment of hepatitis C infection (HCV). However, alisporivir, cyclosporin A, and most other cyclosporins are potent inhibitors of OATP1B1, MRP2, MDR1, and other important drug transporters. Reduction of the side chain hydrophobicity of the P4 residue preserves cyclophilin binding and antiviral potency while decreasing transporter inhibition. Representative inhibitor 33 (NIM258) is a less potent transporter inhibitor relative to previously described cyclosporins, retains anti-HCV activity in cell culture, and has an acceptable pharmacokinetic profile in rats and dogs. An X-ray structure of 33 bound to rat cyclophilin D is reported. | ||
- | |||
- | Potent nonimmunosuppressive cyclophilin inhibitors with improved pharmaceutical properties and decreased transporter inhibition.,Fu J, Tjandra M, Becker C, Bednarczyk D, Capparelli M, Elling R, Hanna I, Fujimoto R, Furegati M, Karur S, Kasprzyk T, Knapp M, Leung K, Li X, Lu P, Mergo W, Miault C, Ng S, Parker D, Peng Y, Roggo S, Rivkin A, Simmons RL, Wang M, Wiedmann B, Weiss AH, Xiao L, Xie L, Xu W, Yifru A, Yang S, Zhou B, Sweeney ZK J Med Chem. 2014 Oct 23;57(20):8503-16. doi: 10.1021/jm500862r. Epub 2014 Oct 13. PMID:25310383<ref>PMID:25310383</ref> | ||
- | |||
- | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | ||
- | </div> | ||
- | <div class="pdbe-citations 4tot" style="background-color:#fffaf0;"></div> | ||
==See Also== | ==See Also== |
Current revision
Crystal structure of rat cyclophilin D in complex with a potent nonimmunosuppressive inhibitor
|