1p7a
From Proteopedia
(Difference between revisions)
(One intermediate revision not shown.) | |||
Line 1: | Line 1: | ||
==Solution Structure of the Third Zinc Finger from BKLF== | ==Solution Structure of the Third Zinc Finger from BKLF== | ||
- | <StructureSection load='1p7a' size='340' side='right' caption='[[1p7a | + | <StructureSection load='1p7a' size='340' side='right'caption='[[1p7a]]' scene=''> |
== Structural highlights == | == Structural highlights == | ||
- | <table><tr><td colspan='2'>[[1p7a]] is a 1 chain structure with sequence from [ | + | <table><tr><td colspan='2'>[[1p7a]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Mus_musculus Mus musculus]. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1P7A OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1P7A FirstGlance]. <br> |
- | </td></tr><tr id=' | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">Solution NMR</td></tr> |
- | <tr id=' | + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr> |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[ | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1p7a FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1p7a OCA], [https://pdbe.org/1p7a PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1p7a RCSB], [https://www.ebi.ac.uk/pdbsum/1p7a PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1p7a ProSAT]</span></td></tr> |
</table> | </table> | ||
== Function == | == Function == | ||
- | [ | + | [https://www.uniprot.org/uniprot/KLF3_MOUSE KLF3_MOUSE] Binds to the CACCC box of erythroid cell-expressed genes. May play a role in hematopoiesis.<ref>PMID:8657145</ref> <ref>PMID:15684403</ref> |
== Evolutionary Conservation == | == Evolutionary Conservation == | ||
[[Image:Consurf_key_small.gif|200px|right]] | [[Image:Consurf_key_small.gif|200px|right]] | ||
Line 20: | Line 20: | ||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1p7a ConSurf]. | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1p7a ConSurf]. | ||
<div style="clear:both"></div> | <div style="clear:both"></div> | ||
- | <div style="background-color:#fffaf0;"> | ||
- | == Publication Abstract from PubMed == | ||
- | Classical (CCHH) zinc fingers are among the most common protein domains found in eukaryotes. They function as molecular recognition elements that mediate specific contact with DNA, RNA, or other proteins and are composed of a betabetaalpha fold surrounding a single zinc ion that is ligated by two cysteine and two histidine residues. In a number of variant zinc fingers, the final histidine is not conserved, and in other unrelated zinc binding domains, residues such as aspartate can function as zinc ligands. To test whether the final histidine is required for normal folding and the DNA-binding function of classical zinc fingers, we focused on finger 3 of basic Kruppel-like factor. The structure of this domain was determined using NMR spectroscopy and found to constitute a typical classical zinc finger. We generated a panel of substitution mutants at the final histidine in this finger and found that several of the mutants retained some ability to fold in the presence of zinc. Consistent with this result, we showed that mutation of the final histidine had only a modest effect on DNA binding in the context of the full three-finger DNA-binding domain of basic Kruppel-like factor. Further, the zinc binding ability of one of the point mutants was tested and found to be indistinguishable from the wild-type domain. These results suggest that the final zinc chelating histidine is not an essential feature of classical zinc fingers and have implications for zinc finger evolution, regulation, and the design of experiments testing the functional roles of these domains. | ||
- | |||
- | CCHX zinc finger derivatives retain the ability to bind Zn(II) and mediate protein-DNA interactions.,Simpson RJ, Cram ED, Czolij R, Matthews JM, Crossley M, Mackay JP J Biol Chem. 2003 Jul 25;278(30):28011-8. Epub 2003 May 7. PMID:12736264<ref>PMID:12736264</ref> | ||
- | |||
- | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | ||
- | </div> | ||
- | <div class="pdbe-citations 1p7a" style="background-color:#fffaf0;"></div> | ||
== References == | == References == | ||
<references/> | <references/> | ||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> | ||
- | [[Category: | + | [[Category: Large Structures]] |
- | [[Category: | + | [[Category: Mus musculus]] |
- | [[Category: | + | [[Category: Cram ED]] |
- | [[Category: | + | [[Category: Crossley M]] |
- | + | [[Category: Czolij R]] | |
- | + | [[Category: Mackay JP]] | |
- | [[Category: | + | [[Category: Matthews JM]] |
- | [[Category: | + | [[Category: Simpson RJY]] |
- | [[Category: | + | |
- | [[Category: | + | |
- | + |
Current revision
Solution Structure of the Third Zinc Finger from BKLF
|