User:Nathan Marohn/Sandbox 2

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 1: Line 1:
==''Glucose-dependent insulinotropic polypeptide receptor (GIP-R)''==
==''Glucose-dependent insulinotropic polypeptide receptor (GIP-R)''==
<StructureSection load='7ra3' size='350' frame='true' side='right' caption='GIP-R 7RA3' scene='10/1037518/Gipr_domains/5'>
<StructureSection load='7ra3' size='350' frame='true' side='right' caption='GIP-R 7RA3' scene='10/1037518/Gipr_domains/5'>
- 
== Introduction ==
== Introduction ==
'''Glucose-dependent insulinotropic polypeptide receptor (GIP-R)''' is a G-protein coupled receptor stimulated by gastric inhibitory peptide (GIP). is released from endocrine cells in the small intestine and binds to GIP-R, which is commonly expressed in pancreatic ß-cells, adipose tissue, osteoblasts, and the hypothalamus. GIP-R was biochemically discovered in 1969 and its structure was later determined using [https://en.wikipedia.org/wiki/Cryogenic_electron_microscopy cryo-electron microscopy].
'''Glucose-dependent insulinotropic polypeptide receptor (GIP-R)''' is a G-protein coupled receptor stimulated by gastric inhibitory peptide (GIP). is released from endocrine cells in the small intestine and binds to GIP-R, which is commonly expressed in pancreatic ß-cells, adipose tissue, osteoblasts, and the hypothalamus. GIP-R was biochemically discovered in 1969 and its structure was later determined using [https://en.wikipedia.org/wiki/Cryogenic_electron_microscopy cryo-electron microscopy].

Revision as of 22:08, 24 April 2024

Glucose-dependent insulinotropic polypeptide receptor (GIP-R)

GIP-R 7RA3

Drag the structure with the mouse to rotate

References

[1] [2] [3] [4] [5]

  1. Mayendraraj A, Rosenkilde MM, Gasbjerg LS. GLP-1 and GIP receptor signaling in beta cells interactions and co-stimulation. Peptides. 2022 May;151:170749. PMID:35065096 doi:10.1016/j.peptides.2022.170749
  2. Seino Y, Fukushima M, Yabe D. GIP and GLP-1, the two incretin hormones: Similarities and differences. J Diabetes Investig. 2010 Apr 22;1(1-2):8-23. PMID:24843404 doi:10.1111/j.2040-1124.2010.00022.x
  3. Sun B, Willard FS, Feng D, Alsina-Fernandez J, Chen Q, Vieth M, Ho JD, Showalter AD, Stutsman C, Ding L, Suter TM, Dunbar JD, Carpenter JW, Mohammed FA, Aihara E, Brown RA, Bueno AB, Emmerson PJ, Moyers JS, Kobilka TS, Coghlan MP, Kobilka BK, Sloop KW. Structural determinants of dual incretin receptor agonism by tirzepatide. Proc Natl Acad Sci U S A. 2022 Mar 29;119(13):e2116506119. PMID:35333651 doi:10.1073/pnas.2116506119
  4. Yaqub T, Tikhonova IG, Lättig J, Magnan R, Laval M, Escrieut C, Boulègue C, Hewage C, Fourmy D. Identification of determinants of glucose-dependent insulinotropic polypeptide receptor that interact with N-terminal biologically active region of the natural ligand. Mol Pharmacol. 2010 Apr;77(4):547-58. PMID:20061446 doi:10.1124/mol.109.060111
  5. Zhao F, Zhou Q, Cong Z, Hang K, Zou X, Zhang C, Chen Y, Dai A, Liang A, Ming Q, Wang M, Chen LN, Xu P, Chang R, Feng W, Xia T, Zhang Y, Wu B, Yang D, Zhao L, Xu HE, Wang MW. Structural insights into multiplexed pharmacological actions of tirzepatide and peptide 20 at the GIP, GLP-1 or glucagon receptors. Nat Commun. 2022 Feb 25;13(1):1057. PMID:35217653 doi:10.1038/s41467-022-28683-0

Proteopedia Page Contributors and Editors (what is this?)

Nathan Marohn

Personal tools