|
|
(2 intermediate revisions not shown.) |
Line 1: |
Line 1: |
| | | |
| ==Catalytic Domain Of Muty From Escherichia Coli K20A Mutant== | | ==Catalytic Domain Of Muty From Escherichia Coli K20A Mutant== |
- | <StructureSection load='1wef' size='340' side='right' caption='[[1wef]], [[Resolution|resolution]] 1.90Å' scene=''> | + | <StructureSection load='1wef' size='340' side='right'caption='[[1wef]], [[Resolution|resolution]] 1.90Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[1wef]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/"bacillus_coli"_migula_1895 "bacillus coli" migula 1895]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1WEF OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1WEF FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[1wef]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Escherichia_coli Escherichia coli]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1WEF OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1WEF FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=SF4:IRON/SULFUR+CLUSTER'>SF4</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.9Å</td></tr> |
- | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[1weg|1weg]], [[1wei|1wei]]</td></tr> | + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=SF4:IRON/SULFUR+CLUSTER'>SF4</scene></td></tr> |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1wef FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1wef OCA], [http://pdbe.org/1wef PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=1wef RCSB], [http://www.ebi.ac.uk/pdbsum/1wef PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=1wef ProSAT]</span></td></tr> | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1wef FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1wef OCA], [https://pdbe.org/1wef PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1wef RCSB], [https://www.ebi.ac.uk/pdbsum/1wef PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1wef ProSAT]</span></td></tr> |
| </table> | | </table> |
| == Function == | | == Function == |
- | [[http://www.uniprot.org/uniprot/MUTY_ECOLI MUTY_ECOLI]] Adenine glycosylase active on G-A mispairs. MutY also corrects error-prone DNA synthesis past GO lesions which are due to the oxidatively damaged form of guanine: 7,8-dihydro-8-oxoguanine (8-oxo-dGTP). | + | [https://www.uniprot.org/uniprot/MUTY_ECOLI MUTY_ECOLI] Adenine glycosylase active on G-A mispairs. MutY also corrects error-prone DNA synthesis past GO lesions which are due to the oxidatively damaged form of guanine: 7,8-dihydro-8-oxoguanine (8-oxo-dGTP). |
| == Evolutionary Conservation == | | == Evolutionary Conservation == |
| [[Image:Consurf_key_small.gif|200px|right]] | | [[Image:Consurf_key_small.gif|200px|right]] |
Line 31: |
Line 31: |
| | | |
| ==See Also== | | ==See Also== |
- | *[[DNA glycosylase|DNA glycosylase]] | + | *[[DNA glycosylase 3D structures|DNA glycosylase 3D structures]] |
| == References == | | == References == |
| <references/> | | <references/> |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Bacillus coli migula 1895]] | + | [[Category: Escherichia coli]] |
- | [[Category: Arvai, A S]] | + | [[Category: Large Structures]] |
- | [[Category: Hitomi, K]] | + | [[Category: Arvai AS]] |
- | [[Category: Tainer, J A]] | + | [[Category: Hitomi K]] |
- | [[Category: Hydrolase]] | + | [[Category: Tainer JA]] |
| Structural highlights
Function
MUTY_ECOLI Adenine glycosylase active on G-A mispairs. MutY also corrects error-prone DNA synthesis past GO lesions which are due to the oxidatively damaged form of guanine: 7,8-dihydro-8-oxoguanine (8-oxo-dGTP).
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
The Escherichia coli adenine DNA glycosylase, MutY, plays an important role in the maintenance of genomic stability by catalyzing the removal of adenine opposite 8-oxo-7,8-dihydroguanine or guanine in duplex DNA. Although the x-ray crystal structure of the catalytic domain of MutY revealed a mechanism for catalysis of the glycosyl bond, it appeared that several opportunistically positioned lysine side chains could participate in a secondary beta-elimination reaction. In this investigation, it is established via site-directed mutagenesis and the determination of a 1.35-A structure of MutY in complex with adenine that the abasic site (apurinic/apyrimidinic) lyase activity is alternatively regulated by two lysines, Lys142 and Lys20. Analyses of the crystallographic structure also suggest a role for Glu161 in the apurinic/apyrimidinic lyase chemistry. The beta-elimination reaction is structurally and chemically uncoupled from the initial glycosyl bond scission, indicating that this reaction occurs as a consequence of active site plasticity and slow dissociation of the product complex. MutY with either the K142A or K20A mutation still catalyzes beta and beta-delta elimination reactions, and both mutants can be trapped as covalent enzyme-DNA intermediates by chemical reduction. The trapping was observed to occur both pre- and post-phosphodiester bond scission, establishing that both of these intermediates have significant half-lives. Thus, the final spectrum of DNA products generated reflects the outcome of a delicate balance of closely related equilibrium constants.
Reaction intermediates in the catalytic mechanism of Escherichia coli MutY DNA glycosylase.,Manuel RC, Hitomi K, Arvai AS, House PG, Kurtz AJ, Dodson ML, McCullough AK, Tainer JA, Lloyd RS J Biol Chem. 2004 Nov 5;279(45):46930-9. Epub 2004 Aug 23. PMID:15326180[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Manuel RC, Hitomi K, Arvai AS, House PG, Kurtz AJ, Dodson ML, McCullough AK, Tainer JA, Lloyd RS. Reaction intermediates in the catalytic mechanism of Escherichia coli MutY DNA glycosylase. J Biol Chem. 2004 Nov 5;279(45):46930-9. Epub 2004 Aug 23. PMID:15326180 doi:http://dx.doi.org/10.1074/jbc.M403944200
|