Alcohol dehydrogenase

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Current revision (08:08, 22 May 2024) (edit) (undo)
 
(16 intermediate revisions not shown.)
Line 3: Line 3:
[[Image:1htb2.png|thumb|left|250px|Structure of Alcohol Dehydrogenase]]
[[Image:1htb2.png|thumb|left|250px|Structure of Alcohol Dehydrogenase]]
{{Clear}}
{{Clear}}
-
'''Alcohol dehydrogenase''' (ADH, EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=1.1.1.1 1.1.1.1]) is an 80kDa enzyme that catalyzes the 4th step in the metabolism of fructose before [[glycolysis]]. In the 4th step, glyceraldehyde is converted to the glycolytic intermediate DHAP by the NADH-dependent, ADH catalyzed reduction to glycerol.<ref>Voet, et. al. ''Fundamentals of Biochemistry: 3rd Edition''. Hoboken: Wiley & Sons, Inc, 2008.</ref> ADH catalyzes the oxidation of primary and secondary alcohols to their corresponding aldehydes and ketones through a mechanism that involves the removal of a hydrogen. For detailed discussion of horse liver alcohol dehydrogenase see [[Horse Liver Alcohol Dehydrogenase]]. More detailed discussions in<br />
+
__TOC__
 +
==Function==
 +
 
 +
'''Alcohol dehydrogenase''' (ADH, EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=1.1.1.1 1.1.1.1]) is an 80kDa enzyme that catalyzes the 4th step in the metabolism of fructose before [[glycolysis]]. In the 4th step, glyceraldehyde is converted to the glycolytic intermediate DHAP by the NADH-dependent, ADH catalyzed reduction to glycerol.<ref>Voet, et. al. ''Fundamentals of Biochemistry: 3rd Edition''. Hoboken: Wiley & Sons, Inc, 2008.</ref> ADH catalyzes the oxidation of primary and secondary alcohols to their corresponding aldehydes and ketones through a mechanism that involves the removal of a hydrogen. More detailed discussions in<br />
Line 9: Line 12:
*[[Alcohol dehydrogenase from Clostridium beijerinckii]]<br />
*[[Alcohol dehydrogenase from Clostridium beijerinckii]]<br />
*[[Alcohol dehydrogenase from Entamoeba histolytica]]<br />
*[[Alcohol dehydrogenase from Entamoeba histolytica]]<br />
 +
*[[ALDH2]]<br />
*[[D275P mutant of alcohol dehydrogenase from protozoa Entamoeba histolytica]]<br />
*[[D275P mutant of alcohol dehydrogenase from protozoa Entamoeba histolytica]]<br />
*[[Horse Liver Alcohol Dehydrogenase]]<br />
*[[Horse Liver Alcohol Dehydrogenase]]<br />
*[[Contribution of Pro275 to the Thermostability of the Alcohol Dehydrogenases]].
*[[Contribution of Pro275 to the Thermostability of the Alcohol Dehydrogenases]].
'''Hydroxyacyl-CoA dehydrogenase''' (HADH) catalyzes the conversion of 3-hydroxyacyl-CoA to 3-oxoacyl-CoA. NAD is the cofactor of HADH activity. HADH oxidates straight-chain 3-hydroxyacyl-CoAs in the β-oxidation pathway of fatty acid metabolism. HADH is classified according to its substrate ads short chain (SHCDH) and long chain HADH. HADH deficiency is a genetic disorder.
'''Hydroxyacyl-CoA dehydrogenase''' (HADH) catalyzes the conversion of 3-hydroxyacyl-CoA to 3-oxoacyl-CoA. NAD is the cofactor of HADH activity. HADH oxidates straight-chain 3-hydroxyacyl-CoAs in the β-oxidation pathway of fatty acid metabolism. HADH is classified according to its substrate ads short chain (SHCDH) and long chain HADH. HADH deficiency is a genetic disorder.
 +
 +
'''alcohol dehydrogenase I, II, III, IV''' differ by their tissue specificity.
 +
 +
'''Secondary alcohol dehydrogenase''' catalyses the reduction of acetone to isopropanol<ref>PMID: 22686835</ref>.
 +
 +
'''NADP-dependent alcohol dehydrogenase''' catalyses the redox equilibria between aldehydes or ketones and the corresponding primary or secondary alcohols <ref>PMID: 8349550</ref>.
 +
 +
'''Quinone-dependent alcohol dehydrogenase''' oxidizes primary, secondary alcohols, aldehydes, polysaccharides and cyclodextrins <ref>PMID: 26440996</ref>.
 +
 +
'''Quinohemoprotein alcohol dehydrogenase''' have pyrroloquinoline quinone (PQQ) as the prosthetic group <ref>PMID: 15234265</ref>.
For chimeras of alcohol dehydrogenase see<br />
For chimeras of alcohol dehydrogenase see<br />
Line 23: Line 37:
<br/>
<br/>
{{Clear}}
{{Clear}}
- 
-
==Structure==
 
- 
-
The initial scene (<scene name='Birrer_Sandbox_2/Whole_adh_molecule/3'>Domains of ADH</scene>) shows an overview of the molecule, allowing for a general look at the tertiary structure of alcohol dehydrogenase (it is complexed with Cl, Pyz, NAD, and Zn). A second scene (<scene name='Birrer_Sandbox_2/Close_look_at_ligand/2'>Closer Look at Subunit</scene>) shows a close view of the ligand within each subunit. Labels have been placed on NAD, CL, and Zn to clearly establish the structure.
 
- 
- 
-
Within alcohol dehydrogenase, <scene name='Birrer_Sandbox_2/The_active_site/1'>the active</scene> site of alcohol dehydrogenase has three important residues, Phe 93, Leu 57, and Leu 116. These three residues work together to bind to the alcohol substrate.<ref>''Protein: Alcohol Dehydrogenase''. The College of Saint Benedict and Saint John's University. 1 March 2010 < http://www.users.csbsju.edu/~hjakubow/classes/rasmolchime/99ch331proj/alcoholdehydro/index.htm></ref>
 
- 
- 
-
Zn plays an important role in the catalysis. It funtions by electrostatically stabilizing the oxygen in alcohol during the reaction, which causes the alcohol to be more acidic. At the <scene name='Birrer_Sandbox_2/Zinc_binding_site/1'>Zinc Binding Site</scene>, Zinc coordinates with Cys 146, Cys 174, and His 67.<ref>''Protein: Alcohol Dehydrogenase''. The College of Saint Benedict and Saint John's University. 1 March 2010 < http://www.users.csbsju.edu/~hjakubow/classes/rasmolchime/99ch331proj/alcoholdehydro/index.htm></ref>
 
- 
- 
-
NAD functions as a cosubstrate in the dehydration. NAD binds to numerous residues in a series of beta-alpha-beta folds. <scene name='Birrer_Sandbox_2/Nad_binding_site/1'>NAD Binding Region</scene> shows the domain where NAD binds, and many of the residues with which it interacts are selected.
 
-
<ref>''Protein: Alcohol Dehydrogenase''. The College of Saint Benedict and Saint John's University. 1 March 2010 < http://www.users.csbsju.edu/~hjakubow/classes/rasmolchime/99ch331proj/alcoholdehydro/index.htm></ref>
 
- 
- 
-
Alcohol dehydrogenase exists as a dimer with a zinc molecule complexed in each of the subunits. It has a SCOP catagory of an alpha and beta protein. At the N-terminal, there is a domain that is all beta; however, the C-Terminal domain is alpha and beta, so the catagory is alpha and beta. The C-Terminal core has 3 layers of alpha/beta/alpha and parallel beta sheets of 6 strands.<ref>''Protein: Alcohol dehydrogenase from Human (Homo sapiens), different isozymes''. SCOP. 2009. 1 March 2010 < http://scop.berkeley.edu/data/scop.b.d.c.b.b.c.html></ref>
 
- 
==Reaction and Mechanism==
==Reaction and Mechanism==
Line 48: Line 44:
[[image:Mechanism of adh.jpg|left|300px]]
[[image:Mechanism of adh.jpg|left|300px]]
{{Clear}}
{{Clear}}
-
The of alcohol dehydrogenase reaction is as follows: CH3CH2OH + NAD+ -> CH3COH (acetaldehyde) + NADH + H+ (Note: The reaction is actually reversible although the arrow does not show it) <ref>Voet, et. al. ''Fundamentals of Biochemistry: 3rd Edition''. Hoboken: Wiley & Sons, Inc, 2008.</ref> The step-wise reduction mechanism for ADH is shown on the left. In the mechanism, His 51 is deprotonated and activated by a base catalyst. This allows histidine to accept a proton from NAD, which also draws a proton Thr 48. As a result of the proton transfer, the Thr is prepared to accept a proton from the alcohol substrate. While Thr accepts the proton, there is also a hydride transfer to NAD. The whole process can be summarized as the oxidation of an alcohol to an aldehyde in concert with the transfer of a hydride to NAD.<ref>''Protein: Alcohol Dehydrogenase''. The College of Saint Benedict and Saint John's University. 1 March 2010 < http://www.users.csbsju.edu/~hjakubow/classes/rasmolchime/99ch331proj/alcoholdehydro/index.htm></ref><ref>''Protein: Alcohol Dehydrogenase''. The College of Saint Benedict and Saint John's University. 1 March 2010 < http://www.users.csbsju.edu/~hjakubow/classes/rasmolchime/99ch331proj/alcoholdehydro/index.htm></ref>
+
The of alcohol dehydrogenase reaction is as follows: CH3CH2OH + NAD+ -> CH3COH (acetaldehyde) + NADH + H+ (Note: The reaction is actually reversible although the arrow does not show it) <ref>Voet, et. al. ''Fundamentals of Biochemistry: 3rd Edition''. Hoboken: Wiley & Sons, Inc, 2008.</ref> The step-wise reduction mechanism for ADH is shown on the left. In the mechanism, His 51 is deprotonated and activated by a base catalyst. This allows histidine to accept a proton from NAD, which also draws a proton Thr 48. As a result of the proton transfer, the Thr is prepared to accept a proton from the alcohol substrate. While Thr accepts the proton, there is also a hydride transfer to NAD. The whole process can be summarized as the oxidation of an alcohol to an aldehyde in concert with the transfer of a hydride to NAD.<ref>''Protein: Alcohol Dehydrogenase''. The College of Saint Benedict and Saint John's University. 1 March 2010 < http://web.archive.org/web/20080307193453/http://www.users.csbsju.edu/~hjakubow/classes/rasmolchime/99ch331proj/alcoholdehydro/index.htm></ref><ref>''Protein: Alcohol Dehydrogenase''. The College of Saint Benedict and Saint John's University. 1 March 2010 < http://web.archive.org/web/20080307193453/http://www.users.csbsju.edu/~hjakubow/classes/rasmolchime/99ch331proj/alcoholdehydro/index.htm></ref>
The Mechanism for alcohol dehydrogenase follows an random bisubstrate mechanism.<ref>Voet, et. al. ''Fundamentals of Biochemistry: 3rd Edition''. Hoboken: Wiley & Sons, Inc, 2008.</ref> In the mechanism, the NAD+ and alcohol bind to the enzyme, so that the enzyme is now attached to the two subtrates. While attached, the hydrogen is formally transferred from the alcohol to NAD, resulting in the products NADH and a ketone or aldehyde. The two products are then released, and the enzyme has catalyzed the reaction.
The Mechanism for alcohol dehydrogenase follows an random bisubstrate mechanism.<ref>Voet, et. al. ''Fundamentals of Biochemistry: 3rd Edition''. Hoboken: Wiley & Sons, Inc, 2008.</ref> In the mechanism, the NAD+ and alcohol bind to the enzyme, so that the enzyme is now attached to the two subtrates. While attached, the hydrogen is formally transferred from the alcohol to NAD, resulting in the products NADH and a ketone or aldehyde. The two products are then released, and the enzyme has catalyzed the reaction.
Line 80: Line 76:
{{Clear}}
{{Clear}}
 +
 +
== 3D Structures of alcohol dehydrogenase==
 +
[[Alcohol dehydrogenase 3D structures]]
 +
</StructureSection>
</StructureSection>
==Additional Resources==
==Additional Resources==
-
For additional information, see: [[Carbohydrate Metabolism]]<br />
+
For additional information, see:
-
 
+
*[[Carbohydrate Metabolism]]
-
== 3D Structures of Alcohol dehydrogenase==
+
*[[Horse Liver Alcohol Dehydrogenase]]
-
 
+
-
Updated on {{REVISIONDAY2}}-{{MONTHNAME|{{REVISIONMONTH}}}}-{{REVISIONYEAR}}
+
-
{{#tree:id=OrganizedByTopic|openlevels=0|
+
-
 
+
-
*ADH I
+
-
 
+
-
**[[3jv7]] – RrADH I – ''Rhodococcus rubber''<br />
+
-
**[[2vna]] - hADH I catalytic domain - human<br />
+
-
**[[2hcy]] – yADH I – yeast<br />
+
-
**[[4eex]] – LlADH I – ''Lactococcus lactis''<br />
+
-
**[[4eez]] – LlADH I (mutant)
+
-
 
+
-
*ADH I binary complex
+
-
 
+
-
**[[1u3t]] – hADH I α chain + inhibitor<br />
+
-
**[[1hsz]], [[1hdz]], [[3hud]] - hADH I β chain + NAD<br />
+
-
**[[1u3w]] - hADH I γ chain + inhibitor<br />
+
-
**[[1ht0]] - hADH I γ chain (mutant) + NAD
+
-
 
+
-
*ADH I ternary complex
+
-
 
+
-
**[[2xaa]] – RrADH I + NAD + alcohol<br />
+
-
**[[3fx4]] – pADH I + NADP + inhibitor – pig<br />
+
-
**[[4w6z]] – yADH I + Zn + NAD derivative<br />
+
-
**[[2w98]], [[2w4q]] – hADH I catalytic domain + NADP + inhibitor<br />
+
-
**[[1hso]] - hADH I α chain + NAD + pyrazole derivative<br />
+
-
**[[1hdx]] - hADH I β chain + NAD + alcohol<br />
+
-
**[[1u3u]], [[1u3v]] - hADH I β chain + inhibitor<br />
+
-
**[[1deh]], [[1hdy]] - hADH I β chain + NAD + pyrazole derivative<br />
+
-
**[[1htb]] - hADH I β3 chain + NAD + pyrazole derivative
+
-
 
+
-
*ADH II
+
-
 
+
-
**[[3owo]] – ZmADH II iron-dependent – ''Zymomonas mobilis''
+
-
 
+
-
*ADH II binary complex
+
-
 
+
-
**[[3ox4]] - ZmADH II iron-dependent + NAD<br />
+
-
**[[3cos]] - hADH II + NAD + Zn<br />
+
-
**[[1e3e]] – mADH II + NADH – mouse<br />
+
-
**[[1e3l]] - mADH II (mutant) + NADH<br />
+
-
**[[1e3i]] - mADH II + NADH + inhibitor
+
-
 
+
-
*ADH III
+
-
 
+
-
**[[1m6h]], [[1m6w]], [[1teh]] - hADH III χ chain<br />
+
-
**[[2fze]] - hADH III χ chain + ADP-ribose<br />
+
-
**[[2fzw]], [[1mp0]] - hADH III χ chain + NAD<br />
+
-
**[[1mc5]] – hADH III χ chain + glutathione + NADH<br />
+
-
**[[1ma0]] - hADH III χ chain + dodecanoic acid + NAD<br />
+
-
**[[3qj5]] - hADH III χ chain + inhibitor + NAD<br />
+
-
**[[4dl9]], [[4dlb]] – tADH III + NAD – tomato<br />
+
-
**[[4dla]] – tADH III
+
-
 
+
-
*ADH IV
+
-
 
+
-
**[[1ye3]], [[8adh]], [[5adh]], [[4xd2]] - hoADH IV e chain – horse<br />
+
-
**[[1qlj]] - hoADH IV e chain (mutant) <br />
+
-
**[[3iv7]] – ADH IV – ''Corynebacterium glutamicum''
+
-
 
+
-
*ADH IV binary complex
+
-
 
+
-
**[[2jhf]], [[2jhg]], [[1het]], [[1heu]], [[1hf3]], [[1ee2]], [[2oxi]], [[2ohx]], [[6adh]] - hoADH IV e chain + NAD<br />
+
-
**[[1adb]], [[1adc]], [[1adf]], [[1adg]], [[7adh]] - hoADH IV e chain + NAD derivative<br />
+
-
**[[1mgo]], [[1ju9]], [[1qlh]], [[1a72]] - hoADH IV e chain (mutant) + NAD<br />
+
-
**[[1d1s]], [[1agn]] – hADH IV σ chain + NAD<br />
+
-
**[[1d1t]] - hADH IV σ chain (mutant) + NAD
+
-
 
+
-
*ADH IV ternary complex
+
-
 
+
-
**[[3oq6]], [[1qv6]], [[1qv7]], [[1a71]], [[1axe]], [[1axg]], [[4nfh]], [[4nfs]], [[4ng5]] – hoADH IV e chain (mutant) + NAD + alcohol<br />
+
-
**[[4dwv]], [[4dxh]] - hoADH IV e chain + NAD + alcohol<br />
+
-
**[[1p1r]], [[1ldy]], [[1lde]] - hoADH IV e chain + NADH + formamide derivative<br />
+
-
**[[1n92]] - hoADH IV e chain + NAD + pyrazole derivative<br />
+
-
**[[1bto]], [[3bto]] - hoADH IV e chain + NADH + butylthiolane derivative<br />
+
-
**[[1n8k]] - hoADH IV e chain (mutant) + NAD + pyrazole<br />
+
-
**[[1mg0]], [[1hld]] - hoADH IV e chain + NAD + alcohol<br />
+
-
 
+
-
*ADH
+
-
 
+
-
**[[1a4u]] – SlADH – ''Scaptodrosophila lebanonensis''<br />
+
-
**[[3my7]] – ADH ACDH domain – ''Vibrio parahaemolyticus''<br />
+
-
**[[3meq]] – ADH – ''Brucella suis''<br />
+
-
**[[3l4p]] – ADH – ''Desulfovibrio gigas''<br />
+
-
**[[1jvb]] - SsADH – ''Sulfolobus solfataricus''<br />
+
-
**[[3i4c]], [[1nto]], [[1nvg]] – SsADH (mutant) <br />
+
-
**[[3goh]] – ADH – ''Shewanella oneidensis''<br />
+
-
**[[3gaz]] – ADH residues 2-334 – ''Novosphingobium aromaticivorans''<br />
+
-
**[[2eih]] – ADH – ''Thermus thermophilus''<br />
+
-
**[[1rjw]] – GsADH – ''Geobacillus stearothermophilus''<br />
+
-
**[[1vj0]], [[1vhd]] – TmADH -''Thermotoga maritima''<br />
+
-
**[[2eer]] – ADH – ''Sulfolobus tokodaii''<br />
+
-
**[[3uog]] – ADH – ''Sinorhizobium meliloti''<br />
+
-
**[[4bmn]] – ReADH - ''Ralstonia eutropha''<br />
+
-
 
+
-
*ADH binary complex
+
-
 
+
-
**[[3l77]], [[3tn7]] – ADH short-chain + NADP – ''Thermococcus sibiricus''<br />
+
-
**[[1h2b]] – ADH + NAD – ''Aeropyrum pernix''<br />
+
-
**[[1f8f]] – Benzyl-ADH + NAD – ''Acinetobacter calcoaceticus''<br />
+
-
**[[1o2d]] - TmADH + NADP <br />
+
-
**[[3ip1]] – TmADH + Cd<br />
+
-
**[[1b16]], [[1b14]], [[1b15]] - SlADH + NAD derivative<br />
+
-
**[[1cdo]] – ADH + NAD - cod<br />
+
-
**[[1rhc]] – ADH F420-dependent +F420-acetone – ''Methanoculleus thermophilus''<br />
+
-
**[[1agn]] – hADH (sigma) +NAD<br />
+
-
**[[3pii]] – GsADH + butyramide<br />
+
-
**[[3rj5]], [[3rj9]] – SlADH (mutant) + NAD<br />
+
-
**[[3s1l]] – ReADH + Zn <br />
+
-
**[[3jzd]] – ReADH + NAD<br />
+
-
**[[4rqt]] - AtADH P + Zn – ''Arabidopsis thaliana'' <br />
+
-
 
+
-
*ADH ternary complex
+
-
 
+
-
**[[1mg5]] – ADH + NADH + acetate – ''Drosophila melanogaster''<br />
+
-
**[[1r37]] – SsADH + NAD + alcohol<br />
+
-
**[[1sby]] – SlADH + NAD + alcohol<br />
+
-
**[[1b2l]] - SlADH + NAD + cyclohexanone<br />
+
-
**[[1llu]] - ADH + NAD + alcohol – ''Pseudomonas aeruginosa''<br />
+
-
**[[3cv7]] – pADH + NAD + NAP<br />
+
-
**[[3rf7]] – SoADH + NAD + Fe + Ni<br />
+
-
**[[3s2e]] – ReADH + NAD + Zn<br />
+
-
**[[3s2f]], [[3s2g]] – ReADH + NAD + Zn + furfural<br />
+
-
**[[4gkv]] – ADH + NAD + Zn + peptide – ''Escherichia coli''<br />
+
-
**[[4jji]], [[4gl4]], [[3uko]], [[4rqu]] - AtADH III + NAD + Zn <br />
+
-
**[[4l0q]] - AtADH III (mutant) + NAD + Zn <br />
+
-
**[[4cpd]] – TtADH + NAD + Zn<br />
+
-
 
+
-
*NADP-dependent ADH
+
-
 
+
-
**[[1ped]] - CbADH – ''Clostridium beijerinckii''<br />
+
-
**[[2b83]], [[1jqb]] – CbADH (mutant) <br />
+
-
**[[2nvb]] - TbADH (mutant) – ''Thermoanaerobacter brockii''<br />
+
-
**[[3ftn]], [[3fpc]], [[3fpl]], [[3fsr]] – ADH chimera<br />
+
-
**[[1y9a]] - EhADH – ''Entamoeba histolytica''<br />
+
-
**[[2oui]] – EhADH (mutant) <br />
+
-
**[[1p0c]] – RpADH8 – ''Rana perezi'' <br />
+
-
**[[4hfj]] – toADH – tobacco<br />
+
-
**[[4gac]] - mADH
+
-
 
+
-
*NADP-dependent ADH binary complex
+
-
 
+
-
**[[1kev]] – CbADH + NADPH<br />
+
-
**[[1bxz]] – CbADH catalytic domain + alcohol<br />
+
-
**[[1ykf]] – TbADH + NADP<br />
+
-
**[[3h4g]] – pADH + NADP<br />
+
-
**[[1p0f]] – RpADH + NADP<br />
+
-
**[[4hfm]] - toADH + NADP<br />
+
-
**[[4hfn]] - toADH + NADP + coniferaldehyde<br />
+
-
**[[4jbg]] - PaADH + Zn – ''Pyrobaculum aerophilum''<br />
+
-
**[[4jbh]] - PaADH + Zn + Co<br />
+
-
**[[4jbi]] - PaADH + NADP + Zn<br />
+
-
**[[4bms]] – ReADH + NADPH<br />
+
-
**[[4bmv]] – ADH + NADPH – ''Sphingobium yanoikuyae''<br />
+
-
 
+
-
*R-specific ADH
+
-
 
+
-
**[[1nxq]] - LbRADH – ''Lactobacillus brevis''<br />
+
-
**[[1zk2]], [[1zk3]] - LbRADH (mutant)<br />
+
-
**[[1zjy]], [[1zjz]], [[1zk0]], [[1zk1]] – LbRADH (mutant) + NADH + alcohol<br />
+
-
**[[1zk4]] - LbRADH (mutant) + NADH + acetophenone
+
-
 
+
-
*Specific alcohol ADH
+
-
 
+
-
**[[2cf5]], [[2cf6]] – Cinnamyl-AtADH <br />
+
-
**[[1piw]], [[1q1n]], [[1ps0]] – Cinnamyl-yADH<br />
+
-
**[[3two]] - Cinnamyl-ADH + NADP – ''Helicobacter pylori''<br />
+
-
**[[1m2w]] – Mannitol-ADH – ''Pseudomonas fluorescens'' <br />
+
-
**[[1w6s]] – Methanol-ADH – ''Methylobacterium extorquens''<br />
+
-
**[[1yqx]] – Sinapyl-aADH II – aspen<br />
+
-
**[[1yqd]] – Sinapyl-aADH II + NADP<br />
+
-
**[[1bdb]] – Biphenyl dihydrodiol-ADH + NAD - ''Pseudomonas''
+
-
 
+
-
*Quinohemoprotein ADH
+
-
 
+
-
**[[1kv9]], [[1yiq]] – PpQADH II + PQQ + heme – ''Pseudomonas putida''<br />
+
-
**[[1kb0]] - QADH I + PQQ + heme – ''Comamonas testosteroni''
+
-
 
+
-
*Hydroxyacyl-CoA dehydrogenase (HADH)
+
-
 
+
-
**Short chain HADH
+
-
 
+
-
***[[1so8]] – hSHCDH II – human<BR />
+
-
***[[3rqs]] - hSHCDH <BR />
+
-
***[[1f14]] - hSHCDH (mutant)
+
-
 
+
-
**Short chain HADH binary complex
+
-
 
+
-
***[[1f12]] - hSHCDH (mutant) + hydroxybutyryl-CoA<BR />
+
-
***[[1f17]], [[1lsj]], [[1lso]] - hSHCDH (mutant) + NAD<BR />
+
-
***[[1zbq]] - hSHCDH IV + NAD<BR />
+
-
***[[1e3s]] - rSHCDH + NAD – rat
+
-
 
+
-
**Short chain HADH ternary complex
+
-
 
+
-
***[[1u7t]] - hSHCDH II + inhibitor + NAD<BR />
+
-
***[[1f0y]] - hSHCDH + acetoacetyl-CoA + NAD<BR />
+
-
***[[1il0]], [[1m75]], [[1m76]] - hSHCDH (mutant) + acetoacetyl-CoA + NAD<BR />
+
-
***[[1e3w]] - rSHCDH + 3-keto-butyrate + NAD<BR />
+
-
***[[1e6w]] - rSHCDH + estradiol + NAD<BR />
+
-
 
+
-
*Unspecified HADH
+
-
**[[1uay]] - HADH II – ''Thermus thermophilus''<BR />
 
-
**[[1zej]], [[3ctv]] - HADH – ''Archaeoglobus fulgidus''<BR />
 
-
**[[1zcj]] - rHADH <BR />
 
-
**[[2x58]] - rHADH + CoA <BR />
 
-
**[[2et6]] – HADH (mutant) – ''Candida tropicalis''
 
-
}}
 
==References==
==References==

Current revision

Human alcohol dehydrogenase dimer with NAD, Zn+2 (grey) and Cl- (green) ions (PDB code 1hdz)

Drag the structure with the mouse to rotate

Additional Resources

For additional information, see:

References

  1. Voet, et. al. Fundamentals of Biochemistry: 3rd Edition. Hoboken: Wiley & Sons, Inc, 2008.
  2. Sutak R, Hrdy I, Dolezal P, Cabala R, Sedinova M, Lewin J, Harant K, Muller M, Tachezy J. Secondary alcohol dehydrogenase catalyzes the reduction of exogenous acetone to 2-propanol in Trichomonas vaginalis. FEBS J. 2012 Aug;279(15):2768-80. doi: 10.1111/j.1742-4658.2012.08661.x. Epub, 2012 Jul 9. PMID:22686835 doi:http://dx.doi.org/10.1111/j.1742-4658.2012.08661.x
  3. Ismaiel AA, Zhu CX, Colby GD, Chen JS. Purification and characterization of a primary-secondary alcohol dehydrogenase from two strains of Clostridium beijerinckii. J Bacteriol. 1993 Aug;175(16):5097-105. PMID:8349550
  4. Rozeboom HJ, Yu S, Mikkelsen R, Nikolaev I, Mulder HJ, Dijkstra BW. Crystal structure of quinone-dependent alcohol dehydrogenase from Pseudogluconobacter saccharoketogenes. A versatile dehydrogenase oxidizing alcohols and carbohydrates. Protein Sci. 2015 Oct 6. doi: 10.1002/pro.2818. PMID:26440996 doi:http://dx.doi.org/10.1002/pro.2818
  5. Toyama H, Mathews FS, Adachi O, Matsushita K. Quinohemoprotein alcohol dehydrogenases: structure, function, and physiology. Arch Biochem Biophys. 2004 Aug 1;428(1):10-21. PMID:15234265 doi:10.1016/j.abb.2004.03.037
  6. Voet, et. al. Fundamentals of Biochemistry: 3rd Edition. Hoboken: Wiley & Sons, Inc, 2008.
  7. Protein: Alcohol Dehydrogenase. The College of Saint Benedict and Saint John's University. 1 March 2010 < http://web.archive.org/web/20080307193453/http://www.users.csbsju.edu/~hjakubow/classes/rasmolchime/99ch331proj/alcoholdehydro/index.htm>
  8. Protein: Alcohol Dehydrogenase. The College of Saint Benedict and Saint John's University. 1 March 2010 < http://web.archive.org/web/20080307193453/http://www.users.csbsju.edu/~hjakubow/classes/rasmolchime/99ch331proj/alcoholdehydro/index.htm>
  9. Voet, et. al. Fundamentals of Biochemistry: 3rd Edition. Hoboken: Wiley & Sons, Inc, 2008.
  10. Dickinson FM, Monger GP. A study of the kinetics and mechanism of yeast alcohol dehydrogenase with a variety of substrates. Biochem J. 1973 Feb;131(2):261-70. PMID:4352908
  11. Dickinson FM, Monger GP. A study of the kinetics and mechanism of yeast alcohol dehydrogenase with a variety of substrates. Biochem J. 1973 Feb;131(2):261-70. PMID:4352908
  12. Bille V, Remacle J. Simple-kinetic descriptions of alcohol dehydrogenase after immobilization on tresyl-chloride-activated agarose. Eur J Biochem. 1986 Oct 15;160(2):343-8. PMID:3769934
  13. Dickinson FM, Monger GP. A study of the kinetics and mechanism of yeast alcohol dehydrogenase with a variety of substrates. Biochem J. 1973 Feb;131(2):261-70. PMID:4352908
  14. Blomstrand R, Ostling-Wintzell H, Lof A, McMartin K, Tolf BR, Hedstrom KG. Pyrazoles as inhibitors of alcohol oxidation and as important tools in alcohol research: an approach to therapy against methanol poisoning. Proc Natl Acad Sci U S A. 1979 Jul;76(7):3499-503. PMID:115004
  15. Alcohol Dehydrogenase. Worthington Biochemical Corporation . 31 March 2010 < http://http://www.worthington-biochem.com/ADH/default.html>
  16. Alcohol Dehydrogenase.Worthington Biochemical Corporation . 31 March 2010 < http://http://www.worthington-biochem.com/ADH/default.html>
  17. Goihberg E, Dym O, Tel-Or S, Levin I, Peretz M, Burstein Y. A single proline substitution is critical for the thermostabilization of Clostridium beijerinckii alcohol dehydrogenase. Proteins. 2007 Jan 1;66(1):196-204. PMID:17063493 doi:10.1002/prot.21170
  18. Goihberg E, Dym O, Tel-Or S, Shimon L, Frolow F, Peretz M, Burstein Y. Thermal stabilization of the protozoan Entamoeba histolytica alcohol dehydrogenase by a single proline substitution. Proteins. 2008 Feb 7;. PMID:18260103 doi:10.1002/prot.21946
  19. Goihberg E, Peretz M, Tel-Or S, Dym O, Shimon L, Frolow F, Burstein Y. Biochemical and Structural Properties of Chimeras Constructed by Exchange of Cofactor-Binding Domains in Alcohol Dehydrogenases from Thermophilic and Mesophilic Microorganisms. Biochemistry. 2010 Feb 9. PMID:20102159 doi:10.1021/bi901730x
Personal tools