1a0n
From Proteopedia
(Difference between revisions)
(11 intermediate revisions not shown.) | |||
Line 1: | Line 1: | ||
- | {{Seed}} | ||
- | [[Image:1a0n.png|left|200px]] | ||
- | + | ==NMR STUDY OF THE SH3 DOMAIN FROM FYN PROTO-ONCOGENE TYROSINE KINASE COMPLEXED WITH THE SYNTHETIC PEPTIDE P2L CORRESPONDING TO RESIDUES 91-104 OF THE P85 SUBUNIT OF PI3-KINASE, FAMILY OF 25 STRUCTURES== | |
- | + | <StructureSection load='1a0n' size='340' side='right'caption='[[1a0n]]' scene=''> | |
- | + | == Structural highlights == | |
- | + | <table><tr><td colspan='2'>[[1a0n]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1A0N OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1A0N FirstGlance]. <br> | |
- | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">Solution NMR</td></tr> | |
- | --> | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1a0n FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1a0n OCA], [https://pdbe.org/1a0n PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1a0n RCSB], [https://www.ebi.ac.uk/pdbsum/1a0n PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1a0n ProSAT]</span></td></tr> |
- | + | </table> | |
+ | == Function == | ||
+ | [https://www.uniprot.org/uniprot/FYN_HUMAN FYN_HUMAN] Non-receptor tyrosine-protein kinase that plays a role in many biological processes including regulation of cell growth and survival, cell adhesion, integrin-mediated signaling, cytoskeletal remodeling, cell motility, immune response and axon guidance. Inactive FYN is phosphorylated on its C-terminal tail within the catalytic domain. Following activation by PKA, the protein subsequently associates with PTK2/FAK1, allowing PTK2/FAK1 phosphorylation, activation and targeting to focal adhesions. Involved in the regulation of cell adhesion and motility through phosphorylation of CTNNB1 (beta-catenin) and CTNND1 (delta-catenin). Regulates cytoskeletal remodeling by phosphorylating several proteins including the actin regulator WAS and the microtubule-associated proteins MAP2 and MAPT. Promotes cell survival by phosphorylating AGAP2/PIKE-A and preventing its apoptotic cleavage. Participates in signal transduction pathways that regulate the integrity of the glomerular slit diaphragm (an essential part of the glomerular filter of the kidney) by phosphorylating several slit diaphragm components including NPHS1, KIRREL and TRPC6. Plays a role in neural processes by phosphorylating DPYSL2, a multifunctional adapter protein within the central nervous system, ARHGAP32, a regulator for Rho family GTPases implicated in various neural functions, and SNCA, a small pre-synaptic protein. Participates in the downstream signaling pathways that lead to T-cell differentiation and proliferation following T-cell receptor (TCR) stimulation. Also participates in negative feedback regulation of TCR signaling through phosphorylation of PAG1, thereby promoting interaction between PAG1 and CSK and recruitment of CSK to lipid rafts. CSK maintains LCK and FYN in an inactive form. Promotes CD28-induced phosphorylation of VAV1.<ref>PMID:7822789</ref> <ref>PMID:7568038</ref> <ref>PMID:11005864</ref> <ref>PMID:11162638</ref> <ref>PMID:11536198</ref> <ref>PMID:12788081</ref> <ref>PMID:12640114</ref> <ref>PMID:14761972</ref> <ref>PMID:15557120</ref> <ref>PMID:14707117</ref> <ref>PMID:15536091</ref> <ref>PMID:16387660</ref> <ref>PMID:16841086</ref> <ref>PMID:17194753</ref> <ref>PMID:18056706</ref> <ref>PMID:18258597</ref> <ref>PMID:19179337</ref> <ref>PMID:19652227</ref> <ref>PMID:20100835</ref> | ||
+ | == Evolutionary Conservation == | ||
+ | [[Image:Consurf_key_small.gif|200px|right]] | ||
+ | Check<jmol> | ||
+ | <jmolCheckbox> | ||
+ | <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/a0/1a0n_consurf.spt"</scriptWhenChecked> | ||
+ | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | ||
+ | <text>to colour the structure by Evolutionary Conservation</text> | ||
+ | </jmolCheckbox> | ||
+ | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1a0n ConSurf]. | ||
+ | <div style="clear:both"></div> | ||
+ | <div style="background-color:#fffaf0;"> | ||
+ | == Publication Abstract from PubMed == | ||
+ | The interaction of the Fyn SH3 domain with the p85 subunit of PI3-kinase is investigated using structural detail and thermodynamic data. The solution structure complex of the SH3 domain with a proline-rich peptide mimic of the binding site on the p85 subunit is described. This indicates that the peptide binds as a poly(L-proline) type II helix. Circular dichroism spectroscopic studies reveal that in the unbound state the peptide exhibits no structure. Thermodynamic data for the binding of this peptide to the SH3 domain suggest that the weak binding (approximately 31 microM) of this interaction is, in part, due to the entropically unfavorable effect of helix formation (delta S0 = -78 J.mol-1.K-1). Binding of the SH3 domain to the intact p85 subunit (minus its own SH3 domain) is tighter, and the entropic and enthalpic contributions are very different from those given by the peptide interaction (delta S0 = +252 J.mol-1.K-1; delta H0 = +44 kJ.mol-1). From these dramatically different thermodynamic measurements we are able to conclude that the interaction of the proline-rich peptide does not effectively mimic the interaction of the intact p85 subunit with the SH3 domain and suggest that other interactions could be important. | ||
- | + | Structural and thermodynamic characterization of the interaction of the SH3 domain from Fyn with the proline-rich binding site on the p85 subunit of PI3-kinase.,Renzoni DA, Pugh DJ, Siligardi G, Das P, Morton CJ, Rossi C, Waterfield MD, Campbell ID, Ladbury JE Biochemistry. 1996 Dec 10;35(49):15646-53. PMID:8961927<ref>PMID:8961927</ref> | |
+ | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | ||
+ | </div> | ||
+ | <div class="pdbe-citations 1a0n" style="background-color:#fffaf0;"></div> | ||
- | + | ==See Also== | |
- | + | *[[Tyrosine kinase 3D structures|Tyrosine kinase 3D structures]] | |
- | + | == References == | |
- | + | <references/> | |
- | + | __TOC__ | |
- | + | </StructureSection> | |
- | == | + | |
- | + | ||
- | + | ||
- | == | + | |
- | < | + | |
[[Category: Homo sapiens]] | [[Category: Homo sapiens]] | ||
- | [[Category: | + | [[Category: Large Structures]] |
- | [[Category: Campbell | + | [[Category: Campbell ID]] |
- | [[Category: Das | + | [[Category: Das P]] |
- | [[Category: Ladbury | + | [[Category: Ladbury JE]] |
- | [[Category: Morton | + | [[Category: Morton CJ]] |
- | [[Category: Pugh | + | [[Category: Pugh DJR]] |
- | [[Category: Renzoni | + | [[Category: Renzoni DA]] |
- | [[Category: Rossi | + | [[Category: Rossi C]] |
- | [[Category: Siligardi | + | [[Category: Siligardi G]] |
- | [[Category: Waterfield | + | [[Category: Waterfield MD]] |
- | + | ||
- | + | ||
- | + | ||
- | + |
Current revision
NMR STUDY OF THE SH3 DOMAIN FROM FYN PROTO-ONCOGENE TYROSINE KINASE COMPLEXED WITH THE SYNTHETIC PEPTIDE P2L CORRESPONDING TO RESIDUES 91-104 OF THE P85 SUBUNIT OF PI3-KINASE, FAMILY OF 25 STRUCTURES
|
Categories: Homo sapiens | Large Structures | Campbell ID | Das P | Ladbury JE | Morton CJ | Pugh DJR | Renzoni DA | Rossi C | Siligardi G | Waterfield MD