7xax
From Proteopedia
(Difference between revisions)
(New page: '''Unreleased structure''' The entry 7xax is ON HOLD Authors: Zhou, X.L., Li, J., Zhang, J. Description: Crystal structure of SARS coronavirus main protease in complex with Baicalei [[...) |
|||
(5 intermediate revisions not shown.) | |||
Line 1: | Line 1: | ||
- | '''Unreleased structure''' | ||
- | + | ==Crystal structure of SARS coronavirus main protease in complex with Baicalei== | |
+ | <StructureSection load='7xax' size='340' side='right'caption='[[7xax]], [[Resolution|resolution]] 2.25Å' scene=''> | ||
+ | == Structural highlights == | ||
+ | <table><tr><td colspan='2'>[[7xax]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Severe_acute_respiratory_syndrome-related_coronavirus Severe acute respiratory syndrome-related coronavirus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=7XAX OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=7XAX FirstGlance]. <br> | ||
+ | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.25Å</td></tr> | ||
+ | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=3WL:5,6,7-TRIHYDROXY-2-PHENYL-4H-CHROMEN-4-ONE'>3WL</scene></td></tr> | ||
+ | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=7xax FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=7xax OCA], [https://pdbe.org/7xax PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=7xax RCSB], [https://www.ebi.ac.uk/pdbsum/7xax PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=7xax ProSAT]</span></td></tr> | ||
+ | </table> | ||
+ | == Function == | ||
+ | [https://www.uniprot.org/uniprot/R1AB_SARS R1AB_SARS] Multifunctional protein involved in the transcription and replication of viral RNAs. Contains the proteinases responsible for the cleavages of the polyprotein. Inhibits host translation by interacting with the 40S ribosomal subunit. The nsp1-40S ribosome complex further induces an endonucleolytic cleavage near the 5'UTR of host mRNAs, targeting them for degradation. Viral mRNAs are not susceptible to nsp1-mediated endonucleolytic RNA cleavage thanks to the presence of a 5'-end leader sequence and are therefore protected from degradation. By suppressing host gene expression, nsp1 facilitates efficient viral gene expression in infected cells and evasion from host immune response (PubMed:23035226). May disrupt nuclear pore function by binding and displacing host NUP93 (PubMed:30943371).<ref>PMID:23035226</ref> <ref>PMID:30943371</ref> May play a role in the modulation of host cell survival signaling pathway by interacting with host PHB and PHB2. Indeed, these two proteins play a role in maintaining the functional integrity of the mitochondria and protecting cells from various stresses.<ref>PMID:19640993</ref> Responsible for the cleavages located at the N-terminus of the replicase polyprotein. In addition, PL-PRO possesses a deubiquitinating/deISGylating activity and processes both 'Lys-48'- and 'Lys-63'-linked polyubiquitin chains from cellular substrates (PubMed:17692280). Plays a role in host membrane rearrangement that leads to creation of cytoplasmic double-membrane vesicles (DMV) necessary for viral replication. Nsp3, nsp4 and nsp6 together are sufficient to form DMV (PubMed:24410069). Antagonizes innate immune induction of type I interferon by blocking the phosphorylation, dimerization and subsequent nuclear translocation of host IRF3 (PubMed:19369340, PubMed:24622840). Prevents also host NF-kappa-B signaling.<ref>PMID:16271890</ref> <ref>PMID:17692280</ref> <ref>PMID:19369340</ref> <ref>PMID:24622840</ref> <ref>PMID:24410069</ref> Plays a role in host membrane rearrangement that leads to creation of cytoplasmic double-membrane vesicles (DMV) necessary for viral replication. Alone appears incapable to induce membrane curvature, but together with nsp3 is able to induce paired membranes. Nsp3, nsp4 and nsp6 together are sufficient to form DMV.<ref>PMID:23943763</ref> <ref>PMID:24410069</ref> Cleaves the C-terminus of replicase polyprotein at 11 sites. Recognizes substrates containing the core sequence [ILMVF]-Q-|-[SGACN]. Also able to bind an ADP-ribose-1''-phosphate (ADRP). May cleave host ATP6V1G1 thereby modifying host vacuoles intracellular pH.[PROSITE-ProRule:PRU00772]<ref>PMID:16226257</ref> Plays a role in host membrane rearrangement that leads to creation of cytoplasmic double-membrane vesicles (DMV) necessary for viral replication. Nsp3, nsp4 and nsp6 together are sufficient to form DMV (PubMed:24410069). Plays a role in the initial induction of autophagosomes from host reticulum endoplasmic. Later, limits the expansion of these phagosomes that are no longer able to deliver viral components to lysosomes (PubMed:24991833).<ref>PMID:24991833</ref> <ref>PMID:24410069</ref> Forms a hexadecamer with nsp8 (8 subunits of each) that may participate in viral replication by acting as a primase. Alternatively, may synthesize substantially longer products than oligonucleotide primers.<ref>PMID:22039154</ref> Forms a hexadecamer with nsp7 (8 subunits of each) that may participate in viral replication by acting as a primase. Alternatively, may synthesize substantially longer products than oligonucleotide primers.<ref>PMID:22039154</ref> May participate in viral replication by acting as a ssRNA-binding protein.<ref>PMID:19153232</ref> Plays a pivotal role in viral transcription by stimulating both nsp14 3'-5' exoribonuclease and nsp16 2'-O-methyltransferase activities. Therefore plays an essential role in viral mRNAs cap methylation.<ref>PMID:22635272</ref> Responsible for replication and transcription of the viral RNA genome.<ref>PMID:22791111</ref> Multi-functional protein with a zinc-binding domain in N-terminus displaying RNA and DNA duplex-unwinding activities with 5' to 3' polarity. Activity of helicase is dependent on magnesium.<ref>PMID:12917423</ref> <ref>PMID:22615777</ref> Enzyme possessing two different activities: an exoribonuclease activity acting on both ssRNA and dsRNA in a 3' to 5' direction and a N7-guanine methyltransferase activity (PubMed:16549795, PubMed:20421945, PubMed:22635272). Acts as a proofreading exoribonuclease for RNA replication, thereby lowering The sensitivity of the virus to RNA mutagens (PubMed:23966862, PubMed:29511076, PubMed:21593585).<ref>PMID:16549795</ref> <ref>PMID:20421945</ref> <ref>PMID:21593585</ref> <ref>PMID:22635272</ref> <ref>PMID:23966862</ref> <ref>PMID:29511076</ref> Mn(2+)-dependent, uridylate-specific enzyme, which leaves 2'-3'-cyclic phosphates 5' to the cleaved bond. Methyltransferase that mediates mRNA cap 2'-O-ribose methylation to the 5'-cap structure of viral mRNAs. N7-methyl guanosine cap is a prerequisite for binding of nsp16. Therefore plays an essential role in viral mRNAs cap methylation which is essential to evade immune system.<ref>PMID:18417574</ref> <ref>PMID:20421945</ref> | ||
+ | <div style="background-color:#fffaf0;"> | ||
+ | == Publication Abstract from PubMed == | ||
+ | The 3C-like protease (M(pro), 3CL(pro)) plays a key role in the replication process in coronaviruses (CoVs). The M(pro) is an essential enzyme mediates CoVs replication and is a promising target for development of antiviral drugs. Until now, baicalein has been shown the specific activity for SARS-CoV M(pro) in vitro experiments. In this study, we resolved the SARS-CoV M(pro) with baicalein by X-ray diffraction at 2.25 A (PDB code 7XAX), which provided a structural basis for the research and development of baicalein as an anti-CoVs drug. | ||
- | + | Crystal structure of SARS-CoV 3C-like protease with baicalein.,Feng J, Li D, Zhang J, Yin X, Li J Biochem Biophys Res Commun. 2022 Jun 30;611:190-194. doi: , 10.1016/j.bbrc.2022.04.086. Epub 2022 Apr 22. PMID:35490659<ref>PMID:35490659</ref> | |
- | + | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |
- | [[Category: | + | </div> |
- | [[Category: | + | <div class="pdbe-citations 7xax" style="background-color:#fffaf0;"></div> |
- | [[Category: | + | == References == |
- | [[Category: Zhang | + | <references/> |
+ | __TOC__ | ||
+ | </StructureSection> | ||
+ | [[Category: Large Structures]] | ||
+ | [[Category: Severe acute respiratory syndrome-related coronavirus]] | ||
+ | [[Category: Li J]] | ||
+ | [[Category: Zhang J]] | ||
+ | [[Category: Zhou XL]] |
Current revision
Crystal structure of SARS coronavirus main protease in complex with Baicalei
|