|
|
(One intermediate revision not shown.) |
Line 3: |
Line 3: |
| <StructureSection load='1yt4' size='340' side='right'caption='[[1yt4]], [[Resolution|resolution]] 1.40Å' scene=''> | | <StructureSection load='1yt4' size='340' side='right'caption='[[1yt4]], [[Resolution|resolution]] 1.40Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[1yt4]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/"bacillus_coli"_migula_1895 "bacillus coli" migula 1895]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1YT4 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1YT4 FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[1yt4]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Escherichia_coli Escherichia coli]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1YT4 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1YT4 FirstGlance]. <br> |
- | </td></tr><tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat"><div style='overflow: auto; max-height: 3em;'>[[1jwp|1jwp]], [[1li0|1li0]], [[1tdl|1tdl]]</div></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.4Å</td></tr> |
- | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">bla ([https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=562 "Bacillus coli" Migula 1895])</td></tr>
| + | |
- | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[https://en.wikipedia.org/wiki/Beta-lactamase Beta-lactamase], with EC number [https://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.5.2.6 3.5.2.6] </span></td></tr>
| + | |
| <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1yt4 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1yt4 OCA], [https://pdbe.org/1yt4 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1yt4 RCSB], [https://www.ebi.ac.uk/pdbsum/1yt4 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1yt4 ProSAT]</span></td></tr> | | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1yt4 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1yt4 OCA], [https://pdbe.org/1yt4 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1yt4 RCSB], [https://www.ebi.ac.uk/pdbsum/1yt4 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1yt4 ProSAT]</span></td></tr> |
| </table> | | </table> |
| == Function == | | == Function == |
- | [[https://www.uniprot.org/uniprot/BLAT_ECOLX BLAT_ECOLX]] TEM-type are the most prevalent beta-lactamases in enterobacteria; they hydrolyze the beta-lactam bond in susceptible beta-lactam antibiotics, thus conferring resistance to penicillins and cephalosporins. TEM-3 and TEM-4 are capable of hydrolyzing cefotaxime and ceftazidime. TEM-5 is capable of hydrolyzing ceftazidime. TEM-6 is capable of hydrolyzing ceftazidime and aztreonam. TEM-8/CAZ-2, TEM-16/CAZ-7 and TEM-24/CAZ-6 are markedly active against ceftazidime. IRT-4 shows resistance to beta-lactamase inhibitors.
| + | [https://www.uniprot.org/uniprot/BLAT_ECOLX BLAT_ECOLX] TEM-type are the most prevalent beta-lactamases in enterobacteria; they hydrolyze the beta-lactam bond in susceptible beta-lactam antibiotics, thus conferring resistance to penicillins and cephalosporins. TEM-3 and TEM-4 are capable of hydrolyzing cefotaxime and ceftazidime. TEM-5 is capable of hydrolyzing ceftazidime. TEM-6 is capable of hydrolyzing ceftazidime and aztreonam. TEM-8/CAZ-2, TEM-16/CAZ-7 and TEM-24/CAZ-6 are markedly active against ceftazidime. IRT-4 shows resistance to beta-lactamase inhibitors. |
| == Evolutionary Conservation == | | == Evolutionary Conservation == |
| [[Image:Consurf_key_small.gif|200px|right]] | | [[Image:Consurf_key_small.gif|200px|right]] |
Line 16: |
Line 14: |
| <jmolCheckbox> | | <jmolCheckbox> |
| <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/yt/1yt4_consurf.spt"</scriptWhenChecked> | | <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/yt/1yt4_consurf.spt"</scriptWhenChecked> |
- | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | + | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview03.spt</scriptWhenUnchecked> |
| <text>to colour the structure by Evolutionary Conservation</text> | | <text>to colour the structure by Evolutionary Conservation</text> |
| </jmolCheckbox> | | </jmolCheckbox> |
Line 37: |
Line 35: |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Bacillus coli migula 1895]] | + | [[Category: Escherichia coli]] |
- | [[Category: Beta-lactamase]]
| + | |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
- | [[Category: Golemi-Kotra, D]] | + | [[Category: Golemi-Kotra D]] |
- | [[Category: Kim, C]] | + | [[Category: Kim C]] |
- | [[Category: Mobashery, S]] | + | [[Category: Mobashery S]] |
- | [[Category: Shoichet, B K]] | + | [[Category: Shoichet BK]] |
- | [[Category: Thomas, V L]] | + | [[Category: Thomas VL]] |
- | [[Category: Vakulenko, S B]] | + | [[Category: Vakulenko SB]] |
- | [[Category: Hydrolase]]
| + | |
- | [[Category: Inhibitor resistance]]
| + | |
- | [[Category: Irt]]
| + | |
- | [[Category: S130g]]
| + | |
- | [[Category: Tem-1]]
| + | |
| Structural highlights
Function
BLAT_ECOLX TEM-type are the most prevalent beta-lactamases in enterobacteria; they hydrolyze the beta-lactam bond in susceptible beta-lactam antibiotics, thus conferring resistance to penicillins and cephalosporins. TEM-3 and TEM-4 are capable of hydrolyzing cefotaxime and ceftazidime. TEM-5 is capable of hydrolyzing ceftazidime. TEM-6 is capable of hydrolyzing ceftazidime and aztreonam. TEM-8/CAZ-2, TEM-16/CAZ-7 and TEM-24/CAZ-6 are markedly active against ceftazidime. IRT-4 shows resistance to beta-lactamase inhibitors.
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
Beta-lactamase confers resistance to penicillin-like antibiotics by hydrolyzing their beta-lactam bond. To combat these enzymes, inhibitors covalently cross-linking the hydrolytic Ser70 to Ser130 were introduced. In turn, mutant beta-lactamases have emerged with decreased susceptibility to these mechanism-based inhibitors. Substituting Ser130 with glycine in the inhibitor-resistant TEM (IRT) mutant TEM-76 (S130G) prevents the irreversible cross-linking step. Since the completely conserved Ser130 is thought to transfer a proton important for catalysis, its substitution might be hypothesized to result in a nonfunctional enzyme; this is clearly not the case. To investigate how TEM-76 remains active, its structure was determined by X-ray crystallography to 1.40 A resolution. A new water molecule (Wat1023) is observed in the active site, with two configurations located 1.1 and 1.3 A from the missing Ser130 Ogamma; this water molecule likely replaces the Ser130 side-chain hydroxyl in substrate hydrolysis. Intriguingly, this same water molecule is seen in the IRT TEM-32 (M69I/M182T), where Ser130 has moved significantly. TEM-76 shares other structural similarities with various IRTs; like TEM-30 (R244S) and TEM-84 (N276D), the water molecule activating clavulanate for cross-linking (Wat1614) is disordered (in TEM-30 it is actually absent). As expected, TEM-76 has decreased kinetic activity, likely due to the replacement of the Ser130 side-chain hydroxyl with a water molecule. In contrast to the recently determined structure of the S130G mutant in the related SHV-1 beta-lactamase, in TEM-76 the key hydrolytic water (Wat1561) is still present. The conservation of similar accommodations among IRT mutants suggests that resistance arises from common mechanisms, despite the disparate locations of the various substitutions.
Structural consequences of the inhibitor-resistant Ser130Gly substitution in TEM beta-lactamase.,Thomas VL, Golemi-Kotra D, Kim C, Vakulenko SB, Mobashery S, Shoichet BK Biochemistry. 2005 Jul 5;44(26):9330-8. PMID:15981999[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Thomas VL, Golemi-Kotra D, Kim C, Vakulenko SB, Mobashery S, Shoichet BK. Structural consequences of the inhibitor-resistant Ser130Gly substitution in TEM beta-lactamase. Biochemistry. 2005 Jul 5;44(26):9330-8. PMID:15981999 doi:http://dx.doi.org/10.1021/bi0502700
|