2lp2

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Current revision (07:42, 9 October 2024) (edit) (undo)
 
Line 4: Line 4:
== Structural highlights ==
== Structural highlights ==
<table><tr><td colspan='2'>[[2lp2]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2LP2 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2LP2 FirstGlance]. <br>
<table><tr><td colspan='2'>[[2lp2]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2LP2 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2LP2 FirstGlance]. <br>
-
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">Solution NMR</td></tr>
+
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">Solution NMR, 20 models</td></tr>
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CA:CALCIUM+ION'>CA</scene>, <scene name='pdbligand=HCS:2-AMINO-4-MERCAPTO-BUTYRIC+ACID'>HCS</scene></td></tr>
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CA:CALCIUM+ION'>CA</scene>, <scene name='pdbligand=HCS:2-AMINO-4-MERCAPTO-BUTYRIC+ACID'>HCS</scene></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2lp2 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2lp2 OCA], [https://pdbe.org/2lp2 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2lp2 RCSB], [https://www.ebi.ac.uk/pdbsum/2lp2 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2lp2 ProSAT]</span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2lp2 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2lp2 OCA], [https://pdbe.org/2lp2 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2lp2 RCSB], [https://www.ebi.ac.uk/pdbsum/2lp2 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2lp2 ProSAT]</span></td></tr>
Line 10: Line 10:
== Function ==
== Function ==
[https://www.uniprot.org/uniprot/S10A1_HUMAN S10A1_HUMAN] Weakly binds calcium but binds zinc very tightly-distinct binding sites with different affinities exist for both ions on each monomer. Physiological concentrations of potassium ion antagonize the binding of both divalent cations, especially affecting high-affinity calcium-binding sites.
[https://www.uniprot.org/uniprot/S10A1_HUMAN S10A1_HUMAN] Weakly binds calcium but binds zinc very tightly-distinct binding sites with different affinities exist for both ions on each monomer. Physiological concentrations of potassium ion antagonize the binding of both divalent cations, especially affecting high-affinity calcium-binding sites.
 +
<div style="background-color:#fffaf0;">
 +
== Publication Abstract from PubMed ==
 +
S100 proteins play a crucial role in multiple important biological processes in vertebrate organisms acting predominantly as calcium signal transmitters. S100A1 is a typical representative of this family of proteins. After four Ca(2+) ions bind, it undergoes a dramatic conformational change, resulting in exposure, in each of its two identical subunits, a large hydrophobic cleft that binds to target proteins. It has been shown that abnormal expression of S100A1 is strongly correlated with a number of severe human diseases: cardiomyopathy and neurodegenerative disorders. A few years ago, we found that thionylation of Cys 85, the unique cysteine in two identical S100A1 subunits, leads to a drastic increase of the affinity of the protein for calcium. We postulated that the protein activated by thionylation becomes a more efficient calcium signal transmitter. Therefore, we decided to undertake, using nuclear magnetic resonance methods, a comparative study of the structure and dynamics of native and thionylated human S100A1 in its apo and holo states. In this paper, we present the results obtained for both forms of this protein in its holo state and compare them with the previously published structure of native apo-S100. The main conclusion that we draw from these results is that the increased calcium binding affinity of S100A1 upon thionylation arises, most probably, from rearrangement of the hydrophobic core in its apo form.
 +
 +
Impact of calcium binding and thionylation of S100A1 protein on its nuclear magnetic resonance-derived structure and backbone dynamics.,Nowakowski M, Ruszczynska-Bartnik K, Budzinska M, Jaremko L, Jaremko M, Zdanowski K, Bierzynski A, Ejchart A Biochemistry. 2013 Feb 19;52(7):1149-59. doi: 10.1021/bi3015407. Epub 2013 Feb 7. PMID:23351007<ref>PMID:23351007</ref>
 +
 +
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
 +
</div>
 +
<div class="pdbe-citations 2lp2" style="background-color:#fffaf0;"></div>
==See Also==
==See Also==
*[[S100 proteins 3D structures|S100 proteins 3D structures]]
*[[S100 proteins 3D structures|S100 proteins 3D structures]]
 +
== References ==
 +
<references/>
__TOC__
__TOC__
</StructureSection>
</StructureSection>

Current revision

Solution structure and dynamics of human S100A1 protein modified at cysteine 85 with homocysteine disulfide bond formation in calcium saturated form

PDB ID 2lp2

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools